

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (CSEE) 2017

041 BASIC MATHEMATICS

THE NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEMS RESPONSE ANALYSIS REPORT FOR THE CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (CSEE) 2017

041 BASIC MATHEMATICS

Published by
The National Examinations Council of Tanzania,
P.O. Box 2624,
Dar es Salaam, Tanzania.
© The National Examinations Council of Tanzania, 2018
All rights reserved.

TABLE OF CONTENTS

F	OREV	VORD	iv
1.	0	INTRODUCTION	1
2.	0	ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION	2
	2.1	Question 1: Approximation, Radicals and Decimals	2
	2.2	Question 2: Exponents and Logarithms	7
	2.3	Question 3: Algebra and Sets	10
	2.4	Question 4: Vectors and Coordinate Geometry	14
	2.5	Question 5: Similarity and Geometry	18
	2.6	Question 6: Rates and Variations	22
	2.7	Question 7: Percentages	26
	2.8	Question 8: Sequences and Series	29
	2.9	Question 9: Trigonometry	33
	2.10	Question 10: Quadratic Equations	37
	2.11	Question 11: Linear Programming	40
	2.12	Question 12: Statistics	45
	2.13	Question 13: Circles	52
	2.14	Question 14: Accounts	57
	2.15	Question 15: Matrices and Transformations	61
	2.16	Question 16: Functions and Probability	68
3.	0	CONCLUSION AND RECOMMENDATIONS	73
	3.1	Conclusion	73
	3.2	Recommendations	74
	Anne	endix	76

FOREWORD

The National Examinations Council of Tanzania has prepared this report on the analysis of the candidates' responses for Basic Mathematics items for the Certificate of Secondary Education Examination (CSEE) 2017 in order to provide feedback to students, teachers and other education stakeholders on how the candidates responded to the questions.

The analysis shows that, the candidates performed well in the question that was set from the topic of *Accounts*; averagely in the question that was set from the topic of *Statistics* and had weak performance in the questions that were set from the topics of *Matrices and Transformations*, *Approximations*, *Radicals*, *Decimals*, *Rates and Variation*, *Algebra*, *Sets*, *Probability*, *Functions*, *Exponents*, *Logarithms*, *Vectors*, *Coordinate Geometry*, *Circles*, *Quadratic Equations*, *Linear Programming*, *Percentages*, *Trigonometry*, *Sequences and Series*, *Geometry* and *Similarity*.

The candidates' weak performance was due to the following reasons: inability to identify the requirements of the questions; inability to correctly perform mathematical operations; failure to formulate equations/inequalities from given information, inability to correctly represent given information in diagrams; lack of skills to draw graphs; failure to follow given instructions; inadequate knowledge and skills in using the laws, formulae, theorems and other mathematical concepts in answering the questions and substituting incorrect data in these formulae.

It is the expectation of the Council that this report will be useful in improving the candidates' performance in future Basic Mathematics examinations.

The Council would like to thank the examiners, examination officers and all others who participated in preparing this report. The Council will also be grateful to receive constructive comments from the education stakeholders for improving future reports.

Dr. Charles Msonde

EXECUTIVE SECRETARY

1.0 INTRODUCTION

This report has analysed the items responses for the candidates who sat for the 041 Basic Mathematics examination in CSEE 2017. The analysis mainly focuses on the areas on which the candidates faced challenges and those which they performed well.

The 041 Basic Mathematics examination paper consisted of two sections, A and B, with a total of 16 questions. Section A had 10 questions each carrying 6 marks, whereas section B had 6 questions each carrying 10 marks. The candidates were required to answer all the questions in section A and 4 questions from section B.

In 2017, a total of 317,444 candidates sat for the 041 Basic Mathematics examination out of which 60,621 (19.19%) candidates passed. In 2016, a total of 349,202 candidates sat for the 041 Basic Mathematics examination out of which 62,990 (18.12%) candidates passed. This indicates that the performance in 2017 has increased by 1.07 percent.

The analysis of the candidates' performance in each question is presented in section 2 of this report. The analysis briefly includes descriptions of the requirements of the items, summary on how the candidates answered the questions, extracts showing the samples of candidates' best and worst solutions and the reasons for good, average or weak performance in each question.

The candidates' performance was categorized using the percentage of candidates who scored at least 30 percent of the marks that were allocated to a particular question. The performance was categorized in the following three groups: 65 - 100 for a good performance, 30 - 65 for an average performance and 0 - 29 for a weak performance; represented by green, yelow and red colours respectively in the figures and tables used in this report.

2.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION

2.1 Question 1: Approximation, Radicals and Decimals

This question had three parts, namely (a), (b) and (c). In part (a), the candidates were required to round off: (i) 9.67 to ones, (ii) 0.205 to one decimal place and (iii) 0.0197 to two decimal places; and hence use the results to estimate the value of $\frac{9.67 \times 0.205}{0.0197}$. In part (b), the candidates were required to simplify the expressions: (i) $(3+\sqrt{2})(4-2\sqrt{2})$ and (ii) $\sqrt{40} \times \sqrt{45}$, while in part (c), they were required to express 0.3636... in the form $\frac{a}{b}$, where a and b are integers and such that $b \ne 0$.

The performance of the candidates in this question is summarized and represented graphically in Figure 1. It shows that only 23.16 percent of the candidates scored from 2 to 6 marks, therefore the question had a weak performance.

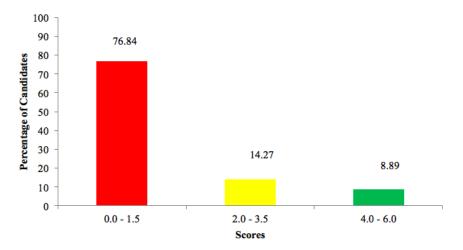


Figure 1: Candidates' Performance in Question 1.

In part (a), the majority of candidates failed to round off to the required number of decimal places. An analysis of the responses shows that the candidates did not understand well the procedures for rounding off decimals. For instance, in part (a) (i), they were unable to round off 9.67 to ones as 10. Several candidates rounded 9.67 to one decimal place, that is, 9.7 while others rounded it to 9, 900, 100, etc. In part (a) (ii), the candidates were unable to round off 0.205 to one decimal place, that is, 0.2 with some of the incorrect answers including 0.21, 0.25, 2.05 and 20.5.

Further analysis shows that other candidates confused between rounding off and identifying place values of a number as well as expressing numbers in standard notation.

The failure of the candidates to obtain correct answers in parts (a) (i) to (iii) also led them to fail to estimate the value of $\frac{9.67 \times 0.205}{0.0197}$. It was also noted that although a number of candidates rounded off the decimals as required, they could not correctly calculate the value of the resulting numerical expression $\frac{10 \times 0.2}{0.02}$ to get the required answer 100. Others did not use the answers they obtained in parts (a) (i) to (iii) as instructed as they calculated the actual value of the given expression, i.e. 100.6269 either by using mathematical tables or by performing long multiplication and division operations.

In part (b) (i), many candidates lacked the knowledge to simplify the given expression by expanding the brackets and handling expressions involving radicals. For example, some omitted the brackets and as a result wrote $(3+\sqrt{2})(4-2\sqrt{2})=3+\sqrt{2}\times 4-2\sqrt{2}$, while several candidates incorrectly multiplied the terms in the brackets. It was also observed that a number of candidates managed to correctly expand the brackets but then failed to get the correct answer when performing the addition and subtraction operations.

In part (b) (ii), some candidates ignored the radical sign when multiplying the numbers, and as a result got $\sqrt{40} \times \sqrt{45} = 40 \times 45 = 1800$. Others multiplied the numbers correctly and got $\sqrt{1800}$ but failed to simplify the expression by expressing the radical as the product of prime factors, that is, $\sqrt{2 \times 3^2 \times 10^2}$ to obtain the required answer $30\sqrt{2}$. Some of the candidates also confused between simplifying and rationalizing the expression, while others used

mathematical tables to find the values of $\sqrt{40}$, $\sqrt{45}$ and $\sqrt{1800}$ instead of simplifying the expression as required.

In part (c), most of the candidates failed to express the repeating decimal as a fraction. It was noted that some of them considered it as a terminating decimal, that is, $0.3636... = \frac{3636}{10000}$ instead of expressing it as a repeating decimal, that is, 0.3636... = 0.36. However, few correctly expressed it as x = 0.36 but failed to perform the calculations to arrive at the required answer $\frac{4}{11}$. It was also observed that several candidates performed calculations that were not related to the demands of the question, such as dividing 0.3636 by 2 or finding its square root, indicating that they lacked the knowledge and skills to convert repeating decimals into fractions. Extract 1.1 is a sample solution of a candidate who failed to answer this question.

Extract 1.1

1	(a) in Round off
	9.67 to ones
	9.67
	= 900
	= 900
	~ 1 12
	(ii) 0.205 one decimal place
	0.205
	= 20.5
	= 20.5
	(iii) 0.0197 to two docimal Place
	= 1.97

$(3 + \sqrt{2}) (4 - 2\sqrt{2})$ $3 + \sqrt{2} \times 4 - 2\sqrt{2}$ $3 + \sqrt{2} \times 2\sqrt{2}$ $(3 \times 2) \cdot \sqrt{2} \times \sqrt{2}$ $6 \times \sqrt{2}$ $= 6 + \sqrt{2}$ $(ii) \sqrt{40} \times \sqrt{45}$ 40×45 1800 $= 1800$	1.	(b) (j)						
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		(3+12)(4-212)						
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		^ ·						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3+12×4-212					-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5.015						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3+ 12 x 2 V2						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2 4 2) 13 4 13					-	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$(3 \times 2) \cdot 12 \times 12$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6 x 1/2	``		``	,		-
(ii) $\sqrt{40} \times \sqrt{45}$ 40×45 1800 = 1800 1. (C) 0. 3636 in form a b 0. 3636 10000 = 3636 10000 = 909 2500 = 909								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 5 1 7 5						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
1800 = 1800 1 (c)		(ii) V/40 x V/45						
= 1800 1 (C) 0.3636 In porm a b 0.3636 10000 = 3636 10000 = 909 2500 = 909 2500 - 909						1. 1		
1 (c) 0.3636 to porm a 0.3636 10000 = 3636 10000 = 909 2500 = 909								
0: 3636 10000 = 3636 10000 = 909 2500 = 909 2500		= 1800						
0: 3636 10000 = 3636 10000 = 909 2500 = 909 = 909	1	(C) 0. 3636 In porm	a					
10000 = 3636 10000 = 909 2500 = 909 = 909			b					
10000 = 3636 10000 = 909 2500 = 909 = 909		0: 2020						
= 3636 10000 = 909 2500 = 909 2500		-	-			-		
10000 = 909 2500 = 909 2500								
= 909 2500 = 909 2500 = 909							A (1)	
= <u>aoq</u> 2500 = <u>9oq</u>				4		2083		
2500 = 909								
= 909					117			1.5
= 909		No.						

Extract 1.1 shows that a candidate lacked the knowledge of rounding off to the required number of decimal places, simplifying expressions and converting a repeating decimal into a fraction.

On the other hand, 3,105 (0.98%) candidates managed to answer this question correctly and scored full marks. Extract 1.2 is a sample solution of one of such candidates.

Extract 1.2

<u>1.</u>	a) solution
	1) 9.67 ~ 10 (To ones)
	ii) 0.205 ~ 0.2 (To one decimal place)
	111) 0.0197 20.02 (To two decimal place)
	Then, $9.67 \times 0.205 = 10 \times 0.2$
	0.0197 0.02
	= 100
!	_ 100
	. Estimated value for 9.67 XO. 205 = 100
	791 - 100 - 0171 - 101 Delimited
	0.0144
-	
	b) i) (3+121)(4-2121)= 12-6121+4121-2141
t ·	= 13 - 313 - 3x3
	$= 13 - 4 - 2\sqrt{2} - 2\times2$
	$= 8 - 3\sqrt{2}$
	· · (3+ (2) (4-2(2)) = 8 - 2(2)
:)	
	111 40 X 45 = 40×45
- 1	$= \sqrt{2 \times 3 \times 3 \times 3 \times 3}$
	$= \sqrt{2} \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$ $= \sqrt{2} \times 3 \times 3 \times 5 \times 5 \times 5$
	$= \sqrt{2^3 \cdot 3^2 \cdot 5^2}$
	$= 2 \times 3 \times 5 \sqrt{2}$
	= 30\2
	$1.140^{1} \times 145^{1} = 3012^{1}$
	. 140, × 145, - 30121
1	c) 0.3636 = 0.36
_	Let, 0.36 is equal to X
	Then, $X = 0.3636$
	Thus, 100x = 36.3636
	$- \times = 0.3636$
	99x = 36
	x = 36 = 4
	99 11
	977 11 11 11 11 11 11 11
	0.3636 in form of 9/b is 4/11

Extract 1.2 shows how a candidate worked out correctly the answers for Question 1.

2.2 Question 2: Exponents and Logarithms

The question had parts (a) and (b). In part (a), the candidates were required to simplify: (i) $27^{1/4} \times 3^{1/4} \times (\sqrt{3})^{-2}$ and (ii) $\log_3 10 + \log_3 8.1$. In part (b), they were required to find the value of n if $n \log_5 125 = \log_2 64$.

Most of the candidates were unable to correctly apply the laws of exponents and logarithms in answering this question. Whereas 79.68 percent of the candidates scored 0 marks, only 15.27 percent of the candidates who attempted it scored from 2 to 6 marks showing that the performance in this question was weak. Figure 2 presents the performance of candidates in this question.

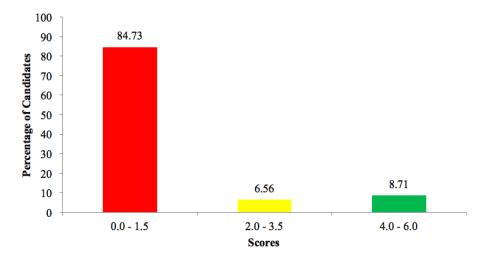


Figure 2: Candidates' Performance in Question 2.

In part (a) (i), many candidates faced problems in expressing the terms in the given expression with a base of 3, an important step in working out the solution. For example, some candidates multiplied the bases and the exponents, while others considered $27^{1/4}$ and $3^{1/4}$ as the mixed fractions $27\frac{1}{4}$ and $3\frac{1}{4}$ respectively.

Some candidates managed to express the given expression correctly as $(3^3)^{1/4} \times 3^{1/4} \times ((3)^{1/2})^{-2}$ but then failed to apply the exponent rule: $a^x \times a^y = a^{x+y}$ to get $3^0 = 1$ as the required answer. Some candidates ignored

the negative sign while adding up the exponents, while others ignored the base and worked out the answer as $\frac{3}{4} + \frac{1}{4} - 1 = 0$, indicating that they did not have adequate knowledge and skills on the laws of exponents.

In part (a) (ii), many candidates could not apply the product rule $\log_a x + \log_a y = \log_a(xy)$ to simplify the expression. For example, some of them incorrectly wrote $\log_3 10 + \log_3 8.1$ is equal to $\log_3 10 \times \log_3 8.1$ instead of $\log_3 (10 \times 8.1)$. It was disappointing to see other candidates cancelling out " \log_3 " in the expression and then either adding or multiplying the numbers left, that is, 10 + 8.1 = 18.1 or $10 \times 8.1 = 81$.

It was also noted that a few candidates managed to correctly apply the product rule to get $\log_3 81$ but did not remember to simplify it further using the power rule ($\log_a M^b = b \log_a M$) to get $4\log_3 3 = 4$ as required.

In part (b), most of the candidates failed to apply the knowledge and skills from the concepts of exponents and logarithms to get the correct value of n in the given logarithmic equation. First, they could not express the terms in the given equation in exponential form as $n\log_5 5^3 = \log_2 2^6$ and then apply the power rule to get the equation $3n\log_5 5 = 6\log_2 2$, which was to be simplified further to 3n = 6 and eventually n = 2. Extract 2.1 is a sample solution of a candidate who failed to answer this question.

Extract 2.1

2(a)	
(i) 27 4 × 3 4 × (J3)	
= 159 x 13 x 59	
. \	
$=$ $\frac{122 + 3}{10}$	
/ φ	
-125	
4	
-31-25.	

2(a)(ii)	105,10 + 105,8.1	* i • <u>/.</u>
1-, 17	= log 10+P·1	7.513
	-log 18.1	
	-:= log 18.1	
(b)		In the Way and
	14 Mlog 125 = log 64	find the value of 11.
-	Sdn.	1 1 1 1 1
	125 = log 600.	
200	log 1250 = log 64.	
	log 250 = log 30%.	
	lag 55" = lug 25	
	5log 5 = 5log 2	
	5/1 log/5 = 5 log7	L
	511-2	
	N = 7/	
	5	11
	00 nlog 5 125 = log 64	$n = \frac{2}{5}$

Extract 2.1 shows a response of a candidate who demonstrates a complete lack of understanding of the laws of exponents and logarithms in answering the question.

However, there were 10,042 (3.16%) candidates who correctly answered this question. A sample answer from one of these candidates is shown in Extract 2.2.

Extract 2.2

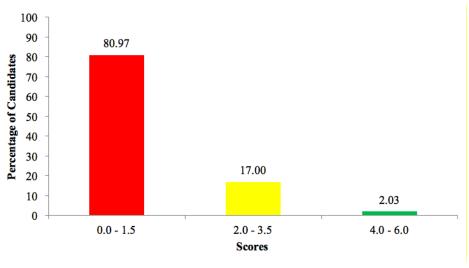
	(a) i) $27^{1/4} \times 3^{1/4} \times (\sqrt{3})^{-2} = 3^{3\times 1/4} \times 3^{1/4} \times$
	- 23/4 x 31/4 x 3
	$= 3^{3/4} \times 3^{1/4} \times 3^{1}$ $= 3^{3/4+1/4-1}$
-	= 3
. >	=1
	$27^{1/4} \times 3^{1/4} \times (\sqrt{31})^{-2} = 1$
**	· Carlo administra a service e e e
	ii) log 310 + log 3.1
	3 (-) (1) (1-) (1-) (1-) (1-)
	from, log a + log c = log ac
	100 + 100 8.1 - 100 (10x 8.1)
	3 3 1 24 1 24 1 20 2 - 4
	$\frac{\log 10 + \log 8.1 = \log_3 (10 \times 8.1)}{3 = \log_3 81 = \log_3 3^4 = 4 \log_3 3 = 4}$
	10010 1/0001 - 1
	$\log_{3} 10 + \log_{3} 8 \cdot 1 = 4$
. 2	L) place 105 = lag (/)
<	b) $n \log 125 = \log 64$
	3-16
	$n \log_5 5^3 = \log_2 2^6$
	5 2
	$3n\log 5 = 6\log^2$
	9
	3n = 6 $n = 2$
	0 = 3
	n = 2

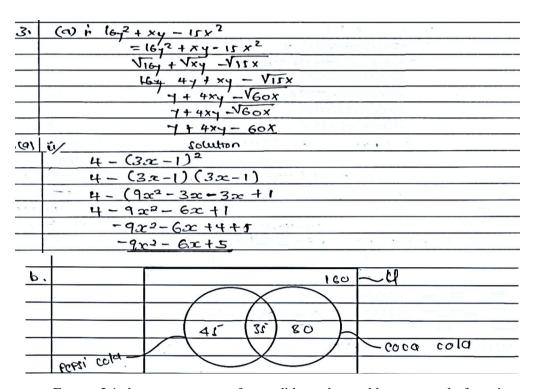
Extract 2.2 shows how a candidate correctly applied the laws of exponents and logarithms.

2.3 Question 3: Algebra and Sets

The question consisted of parts (a) and (b). In part (a), the candidates were required to factorize the expressions: (i) $16y^2 + xy - 15x^2$ and (ii) $4 - (3x - 1)^2$. In part (b), it was given that at Moiva's graduation ceremony 45 people drank pepsicola, 80 drank coca-cola and 35 drank both pepsicola and coca-cola. The candidates were required to find the number of people who were at the ceremony if each person drank pepsicola or coca-cola.

In general, this question had a weak performance, since only 19.03 percent of the candidates scored from 2 to 6 marks. The candidates' scores are shown in Figure 3.




Figure 3: Performance of Candidates in Question 3.

In part (a) (i), the majority of candidates were not able to split the middle term involving variables x and y in order to obtain the quadratic expression $16y^2 + 16xy - 15xy - 15x^2$ that was to be factorized as (16y - 15x)(y + x).

In part (a) (ii), the candidates also failed to factorize the quadratic expression $4-(3x-1)^2$. Some of them could not correctly expand the term $(3x-1)^2$ and as a result failed to obtain the expression $3-9x^2+6x$ that they would factorize by spliting the middle to obtain 3[(-3x-1)(x-1)] as required. Some of them managed to correctly expand it but failed to introduce the negative sign while combining the results, that is. they obtained $4-(3x-1)^2=4-9x^2-6x+1$ instead of $4-9x^2+6x-1$. Further analysis shows that only a few candidates applied correctly the formula for the difference of two squares to express the given expression (2+3x-1)(2-(3x-1)) and eventually simplified it as required. Some candidates wrote the formula wrongly, while others made addition and subtraction errors while applying it. In addition, it was noted that some candidates confused between "factorizing" and "solving" as they equated the given expressions to 0 and then find the values of x and y that satisfied the equations. This shows that the candidates lacked knowledge and skills in factorizing quadratic expressions.

In part (b), most of the candidates were unable to represent correctly the given information in a Venn diagram and therefore could not find the number of people who were at the ceremony. Most of them were unable to find the number of people who drank pepsicola only and coca-cola only. Extract 3.1 illustrates this case. Those candidates did not understand that the number of people who drank pepsicola only was equal to 45 - 35 = 10 and the number of people who drank coca-cola only was equal to 80 - 35 = 45. Further analysis candidates used formula shows that some the $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ instead of using a Venn diagram as instructed. Those candidates lost the marks that were allocated for the Venn diagram. Moreover, there were some candidates who copied the question and did not write the solution, while others used the numbers in the question to perform calculations that were not related to the requirements of the question.

Extract 3.1

Extract 3.1 shows a response of a candidate who could not correctly factorize the given quadratic expressions and represent the given information in the Venn diagram.

On the other hand, there were few candidates (0.41%) who correctly answered this question as they were able to factorize the quadratic expressions and solve the set problem as shown in Extract 3.2.

Extract 3.2

0.3.	a) i Given: $16y^2 + xy - 15x^2$
	$= (16y^2 + 16xy) - 15xy - 15x^2)$
	= 16y(y+x) - 15x(y+x)
	= (16y - 15x)(y+x)
	and the second s
	:. $16y^2 + xy - 15x^2 = (16y - 15x)(y + x)$
	C
80	a) ii, Given: 4-(3x-1)2
	$= 2^2 - (3x-1)^2 \text{from } a^2 - b^2 = (a+b)(a-b)$
	$= 2 + (3x-1) \int 2 - (3x-1) \int$
	=(2-1+3x)(2+1-3x)
	= (3x+1)(3-3x)
	2
	$4 - (3x - 1)^2 = (1 + 3x)(3 - 3x)$
	P) rof.
	P = fau people who diank Pepsi-Cola) C = fall people who diank Coca-Cola?
	C = { au perple who drank Cara-Cola }
	Then: $n(P) = 45$
	n(c) 80
	n(Pnc) = 35
	In Venn diagram.
	P (10 (35) 45) C
	: NPOC) = 10+35+45
	= 90
	: There were 90 people at the ceremony.

Extract 3.2 shows how a candidate correctly factorized the given expressions as well as solved the question on sets.

2.4 Question 4: Vectors and Coordinate Geometry

This question had parts (a), (b) and (c). In part (a), the candidates were given three vectors $\underline{a} = 4\mathbf{i} + 6\mathbf{j}$, $\underline{b} = 4\mathbf{i} + 10\mathbf{j}$ and $\underline{c} = 2\mathbf{i} + 4\mathbf{j}$ and were required to determine the magnitude of their resultant. In part (b), it was given that, Camilla walks 5 km northeast, then 3 km due east and afterwards 2 km due south. The candidates were required to represent these displacements together with the resultant displacement graphically using the scale 1 unit = 1 km. In part (c), the candidates were required to show that triangle ABC was right-angled, where A = (-2, -1), B = (2, 1) and C = (1, 3).

The performance of the candidates in this question is shown in Figure 4.

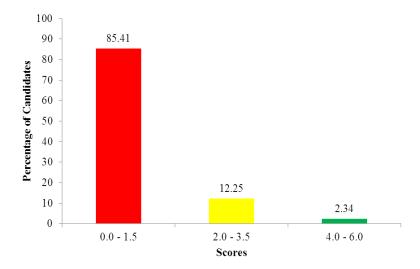
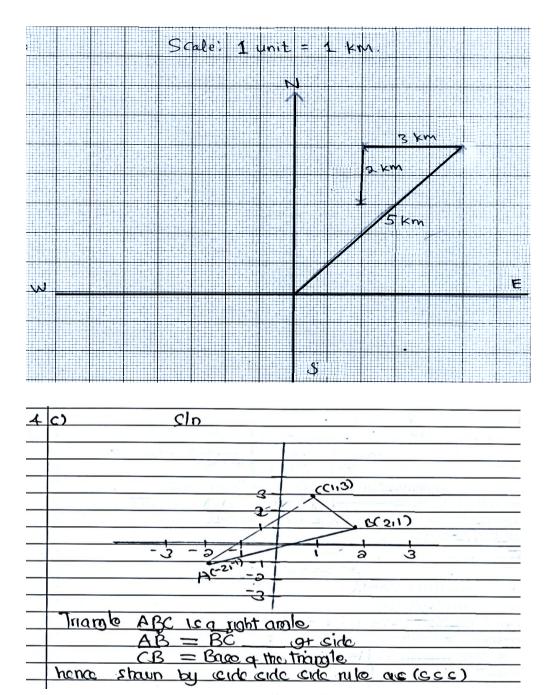


Figure 4: Performance of Candidates in Question 4.

Figure 4 shows that many candidates scored low marks from 0 to 1.5. It also shows that the percentage of candidates who scored from 2 to 6 is 14.59; therefore the question had a weak performance.

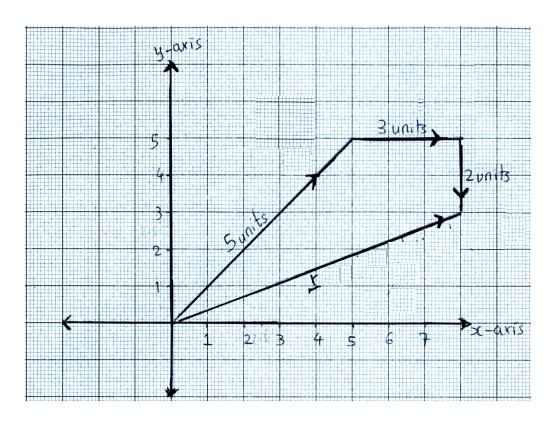

In part (a), most of the candidates failed to determine the magnitude of the resultant of the given vectors. Some of them seemed not to understand the meaning of 'resultant.' Instead of adding the three vectors together, these candidates performed calculations unrelated to the question demand. For example, they determined things, such as the product of the vectors and unit vectors. Although some candidates had an idea of finding $\underline{a} + \underline{b} + \underline{c}$, they could not correctly add the vectors, while others added them correctly but

failed to apply the correct formula for finding the magnitude of a vector. For example, they used formulae such as $|x\underline{i}+y\underline{j}| = \sqrt{x^2-y^2}$ and $|x\underline{i}+y\underline{j}| = \sqrt{x+y}$ instead of $|x\underline{i}+y\underline{j}| = \sqrt{x^2+y^2}$. It was noted that some candidates computed the magnitude of each vector, that is, $|\underline{a}|$, $|\underline{b}|$, $|\underline{c}|$ instead of the magnitude of the resultant vector, that is, $|\underline{a}+\underline{b}+\underline{c}|$.

In part (b), most of the candidates were unable to use the given scale to represent the displacements graphically. Some of the displacements were not drawn in accordance with the given scale, the vectors were not drawn according to their directions and in most cases the directions of the vectors were not indicated.

In part (c), many candidates were unable to use either the slope formula, distance formula or graphical method to show that triangle ABC was a right-angled. For example, some candidates correctly calculated the slopes of the sides of the triangle but failed to relate such slopes with the condition that the "product of the slopes of two perpendicular lines is equal to -1". Also, some candidates managed to find the distance of lines AB, BC and AC but could not correctly use the Pythagoras theorem in establishing the results. Likewise, several candidates represented triangle ABC on the xy-plane but failed to measure the angles in order to conclude that the triangle is right angled. Extract 4.1 is a sample answer showing how the candidates failed to answer parts (b) and (c) of this question.

Extract 4.1



Extract 4.1 shows a response of a candidate who could not represent the given displacements graphically and show that triangle ABC was right-angled.

However, 770 (0.24%) candidates managed to answer this question correctly. Extract 4.2 represents a sample answer from one of the candidates.

Extract 4.2

4 (a)	a=41+6; b=41+10; c=21+4j
, <u> </u>	3,72
114	a+b+c = 4i+6; +4i+10; +2i+4; =4i+4i+2i+6;+10;+4j
27 101	to any and a state of the state
-51	q+b+c = 10i +20;
- 1	d Pleaster than the above the deal of the second
~ .	= 1500 units
	= 1055 units Ans
(b)	IN THE GRAPH PAPER

(c)	distance between A(-2,-1) and B(2,1)
	I selected to the state of the selected of the
	$d = \sqrt{(-2-2)^2 + (-1-1)^2} = \sqrt{16+4} = \sqrt{20} = 2\sqrt{5}$ units
	the of the rest harmon of heatenst had a lightly being the side
	distance between A(-2,-1) and C(1,3)
1,1	$d = \sqrt{(-2-1)^2 + (-3)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$ units
4 (c)	distance between B(2,1) and C(1,3)
	$d = \sqrt{(2-1)^2 + (1-3)^2} = \sqrt{1+4} = \sqrt{5} $ units
	Hence for a right-angled triangled A Pythagoras theorem: a2+b2=c2
	A Pythagoras theorem: $a^2 + b^2 = c^2$ $(2\sqrt{5'})^2 + (\sqrt{5'})^2 = 5^2$
	5 (4x5) + 5 = 25
	2.15
	O = 25 = 25
	Hence LHS = RHS, hence
* *	a right-angled triangle

Extract 4.2 shows a response of a candidate who correctly determined the magnitude of the resultant vector, represented the given displacements together with the resultant displacement graphically and showed that triangle ABC was right-angled.

2.5 Question 5: Similarity and Geometry

The question had parts (a) and (b). In part (a), the candidates were required to: (i) show whether triangles AXB and CXD were similar or not, (ii) find the length CD and (iii) find the ratio of the areas of the triangles AXB and CXD using the given figure ABCD, where $AB = 10 \, \text{cm}$, $AX = 6 \, \text{cm}$, $CX = 8 \, \text{cm}$ and AB was parallel to DC. In part (b), the candidates were required to construct an angle of 90° using a ruler and a compass.

The performance of the candidates in this question is shown in Figure 5.

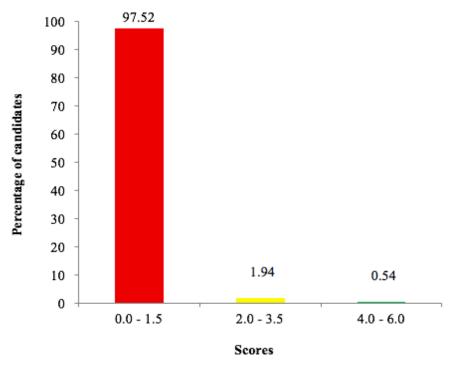
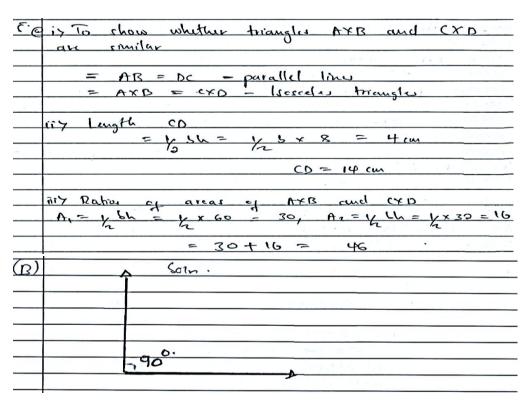


Figure 5: Candidates' Performance in Question 5.

Figure 5 shows that only 2.48 percent of the candidates scored from 2 to 6 marks, therefore the question had a weak performance. The majority of candidates (97.52%) scored low marks (0 to 1.5) and among them 88.42 percent scored 0. In part (a)(i), most of candidates failed to show that triangles AXB and CXD were similar. They were unable to identify two angles in triangle AXB which were congruent to two angles in triangle CXD. These candidates lacked knowledge and skills to apply the AA triangle similarity test. The candidates were also unable to use the fact that 'when two triangles are similar the ratio of lengths of their corresponding sides are equal' in answering parts (a)(ii) and (iii). Further analysis shows that the candidates were unable to use the properties of the parallel lines AB, DC and the transversal lines AC and BD in identifying the congruent angles. Morever, the candidates seemed to lack knowledge on the relationship between the area of two similar triangles and the lengths of their corresponding sides. For example, there were candidates who applied the

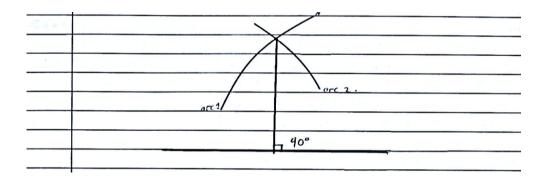

formula
$$\frac{A_l}{A_2} = \frac{h_l}{h_2}$$
 instead of $\frac{A_l}{A_2} = \left(\frac{l_l}{l_2}\right)^2$ in answering part (a)(iii). Extract

5.1 shows a sample solution of one of the candidates who failed to answer this question.

In part (b), many candidates could not construct an angle of 90° using a ruler and a compass. Most of them drew perpendicular lines using a ruler whereas some left this part un-answered. The candidates were unable to realize that the construction of an angle of 90° is done by constructing a perpendicular bisector of a line segment as follows:

Let AB be the line segment. With A and B as centres and radius greater than a half AB, draw arcs which intersect at L and M. Join L and M to obtain the perpendicular bisector of a line segment \overline{AB} that meets at N and an angle $L\widehat{N}B = 90^{\circ}$ as required.

Extract 5.1



Extract 5.1 shows a solution from a candidate who was unable to solve problems using similarity theorems and construct an angle of 90° using a ruler and a compass.

Despite the weak performance in this question, there were 224 (0.07%) candidates who provided correct responses. Those candidates managed to correctly show that triangles AXB and CXD were similar by using the properties of similarity. They were able to find the length CD and the ratio of the areas of triangles AXB and CXD using the lengths of corresponding sides of triangles AXB and CXD. They also managed to correctly construct an angle of 90° using a ruler and a compass as it is shown in Extract 5.2.

Extract 5.2

5(a)	Seln.
(i)	in the triangles AXB and CXD:
	LDxc = LAxB (Vertically upposite angles).
	2BAX = L D CX (attemate interior angles)
	LXDC = CXBA (alterate phterior angles).
	DAXB~A(XD (AAA).
6.1	
(\vec{u})	$\frac{dx}{dx} = DC = Dx$
# H	XA AB. XB
.	BCM = DC
	6cm lucm.
	CD = SCM X luciox
	CD = Secont lucion
	CD = 40cm
	3
	CD = 13.3cm Answer.
(4.7) 3010.
9 192	- (Raho-1 sides) = Raho of areas.
1 11	
	An = 64 => 16
12	A ₁ 36 9
7	Patro of areas is 16:9
12 3	
(b)	CONSTRUCTION OF GOO BY USING RULER AND COMPASS.
green a my	rteps:
1552	(i) prew a straight howevertal line of any length and mark its contre
,	(ii) start from one end put a composis and draw an are
,	(iii) pepace to draw an are in the other side
1,000	((v) jaint the point opintersection of arcs drawn to the centre
	(V) The angles between vertical and horizontal line are 900.

Extract 5.2 shows a solution from a candidate who demonstrated good understanding on the tested concepts of similarity. He/She had adequate skills in constructing an angle of 90° using a ruler and a compass.

2.6 Question 6: Rates and Variations

In part (a) of this question it was given that; In the preparation of fanta orange drink, a bottle filling machine can fill 1,500 bottles in 45 minutes. The candidates were required to find the number of bottles it will fill in $4\frac{1}{2}$ hours.

In part (b), the candidates were required to find the values of a and b in the table below if X varies directly as Y and inversely as W.

X	8	6	b
Y	4	a	2
W	2	3	4

The performance of candidates in this question is presented in Figure 6.

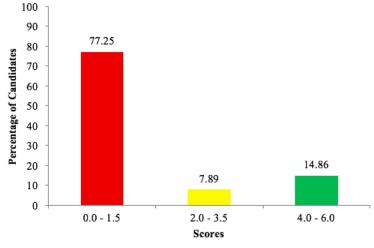


Figure 6: Candidates' Performance in Question 6.

Figure 6 shows that 22.75 percent of the candidates scored from 2 to 6 marks, therefore this question had a weak performance. The majority of candidates scored low marks and notably 70.87 percent scored 0. In part (a), many candidates failed to properly convert 45 minutes into hours or $4\frac{1}{2}$ hours into minutes before finding the required number of bottles. For example, several candidates wrote that the number of bottles equals $\frac{1500 \, \text{bottles} \times 4\frac{1}{2} \, \text{hours}}{45 \, \text{minutes}}$

instead of
$$\frac{1500\,\text{bottles} \times 4\frac{1}{2} \times 60\text{minutes}}{45\text{minutes}}$$
 or $\frac{1500\,\text{bottles} \times 4\frac{1}{2}\,\text{hours}}{\left(\frac{45}{60}\right)\text{hours}}$.

These candidates lacked knowledge of converting units of time.

In part (b), most candidates also failed to formulate the correct variation equation, that is, $X \propto \frac{Y}{W}$ from the statement "X varies directly as Y and inversely as W". Some of the incorrect equations that the candidates wrote include $X \propto \frac{W}{Y}$ and $X \propto WY$. Further analysis shows that some candidates managed to correctly formulate the equation $X = k \frac{Y}{W}$, where k is a proportionality constant but could not correctly use the data given in the table to find the values of a and b. Furthermore, a number of candidates performed calculations that were not related to the requirements of the question and others writing the values of a and b without formulating the variation equation, indicating lack of knowledge on joint variation. Extract 6.1 represents the work of a candidate who failed to correctly answer this question.

Extract 6.1

6	a) Notation
	Data Bottle-1500
	Bottle-1500
	Time-45 ma
	Time-45mn Bottles - ?
	Time -0 270mg
	let Bottle = B
	Time = T
	B, T1 = B2 T2
	1500x 45 = 8,270
	1200 \$ 45 2 37
	1500×45
	270
	= 250
	.: 250 buttles will be produced
6_	(b) Holn
	$x_1 = R x_2 = 6 x_3 = 6$
	9,=4 52=a 93=2
	$W_1 = 2$ $W_2 = 3$ $W_3 = 4$
	X, 9, - X292
	U, W2
	$=8\times x=6\times a$
	7 3
	= 16 = 60
	1 3
	= 6a = 16 × 3
	= a = 8 16x y
	32 1
	·, = a = 8
	X, y, - X, y,
	We Ws
	6 x 8 = bx 2
	3 4
	3 1
	48 = 25
	3 4
-	= 61 = 18 × (0)
	- 65 4XX4.
	6 61
	b= 20
	. b = 32

Extract 6.1 shows a response of a candidate who formulated incorrect variations equations in both parts (a) and (b).

On the other hand, 6.93 percent of the candidates who attempted the question managed to provide correct answers. A sample answer from one of those candidates is shown in Extract 6.2.

Extract 6.2

Ob. Solution.
(a) Given; 1, soobottles are filled in 45 minutes.
472 hours = 4x60+ 3x60 Minutes,
= 2 70 minutes,
Then: 1, soobottles -> 45 minutes
so; x> 27ominutec
I as is the unknown number of
bottles !.
=> == 270 x 1,500 = 9,000,bottles.
4-6
9,000 bottles can be filled.
06. (b) Given; x d y.
W
$x_1 = 8, y_1 = 4, w_1 = 2$
$\Rightarrow x = ky =0$
\sim
= = xw = 8 x 2 = 4.
Now; a = 42.
But y = xw (From a) aboves.
=> 42, a = x2 W2 - 6 x 3
F 4
.'.a = 4.5
Again; $b = x_a$.
But X2 = Fyz
<u> </u>
= x2, b = 4x3 - 2.
,', b = 2.
a = 4.5 and $b = 3.$

Extract 6.2 shows that a candidate applied the concepts of direct and joint variations correctly in answering this question.

2.7 Question 7: Percentages

In this question it was given that, a computer was advertised in a shop as having a list price of sh. 2,500,000/= plus value added tax (VAT) of 20% and the sales manager offered a discount of 25% before adding VAT. The candidates were required to calculate: (a) the list price including VAT, (b) the amount of discount before VAT was added and (c) the reduced final price of the computer.

Most of the candidates who attempted this question got low scores from 0 to 1.5 out of 6 marks (see Figure 7).

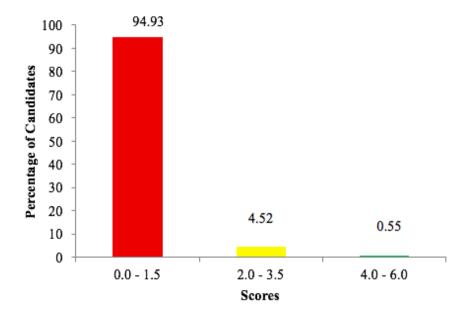


Figure 7: Candidates' Performance in Question 7.

Figure 7 shows only 5.07 percent of the candidates scored from 2 to 6 marks. Therefore the question had a weak performance, despite been straightforward. This weak performance was due to candidates' inability to interpret the question's requirements and failing to apply knowledge of percentages to solve it. The following examples demonstrate why the candidates failed to correctly answer this question.

In part (a), some of the candidates calculated the VAT $(\frac{20}{100} \times 2,500,000 = 500,000/=)$ and wrongly considered it as the list price including VAT; instead of adding it to the given list price, that is, 2,500,000 + 500,000 = 3,000,000/= to get the required answer. Other candidates calculated the VAT correctly but then subtracted it from the given list price, that is, 2,500,000 – 500,000 = 2,000,000.

In part (b), several candidates calculated the amount of discount after VAT was added, that is, $\frac{25}{100} \times 3,000,000 = 750,000/=$ instead of finding the amount of discount before VAT was added, that is $\frac{25}{100} \times 2,500,000 = 625,000/=$.

In part (c), the candidates used incorrect methods, such as:

Reduced Final Price = Price before VAT + Discount

Reduced Final Price = Price after VAT + Discount

Reduced Final Price = List Price-
$$\frac{25}{100} \times Discount$$

The candidates were supposed to calculate it as follows: Reduced Final Price = Price after Discount+VAT after Discount.

Additionally, there were few candidates who applied unrelated formulae, such as: $I = \frac{PRT}{100}$ for simple interest and $A = P\left(1 + \frac{RT}{100}\right)^n$ for compound interest, indicating that they did not understand the requirements of the question. Extract 7.1 illustrates this case.

Extract 7.1

7	(a) Solution
	I = PP.T
	100
	P = · 20 × 2,500,000
	l po -
	5500,000
	The lest price including VAT was 500,000
	(b) 25 x 500,00+0
	Led
	= 125000
	(c) 500 000 - 125000 = 375000
	The final price of the computer = 375000.

Extract 7.1 shows a response of a candidate who performed calculations that were not related to the question demand.

Despite the weak performance, 357 (0.11%) candidates managed to correctly answer this question. These candidates were able to calculate the list price including VAT, the amount of discount before VAT was added and the reduced final price of the computer as required. Extract 7.2 is a sample solution from one of the candidates.

Extract 7.2

1int price = 2500 000
VAT = 20% List price
- 20, X 2 500 000
160
= 500 000
List price t vat = 2500 000 t 500 000
2 3000000/-
The price will be 3000 000%
Discount = 25%
· 25, × 2500 000
/ ee
= 6.25,000
The discount amount is 625,000/2

ું. ૯	Final price
	≈ 2500 000 = 625 000 500 000
	= J875 000
	VAT - 20%
	- 20, x 1875 Deo
	100
	· 375,000
	Final price = 1875 000 + 275 000
	2 22 50 000 /2
	\$
	:. The final price is 2250000%
	e Branch and the state of the s
· e	Final price
	= 2500 000 - 625 000 500 000
	= J875 000
	VAT - 20%
	- 20, x 1875 Deo
	100
	· 375,000
	. Final mice = 1875 000 + 275 000
	2 22 50 000 /2
	:. The final price is 2250000%
	9

Extract 7.2 shows how a candidate worked out the solution correctly.

2.8 Question 8: Sequences and Series

This question had parts (a) and (b). In part (a), the candidates were required to find the number of terms if the sum of n terms of a geometric progression with first term 1 and common ratio $\frac{1}{2}$ was $\frac{31}{16}$. In part (b), they were required to find the number of integers between 14 and 1000 which were divisible by 17.

Figure 8 shows the marks they got out of 6 marks and the corresponding percentage of candidates.

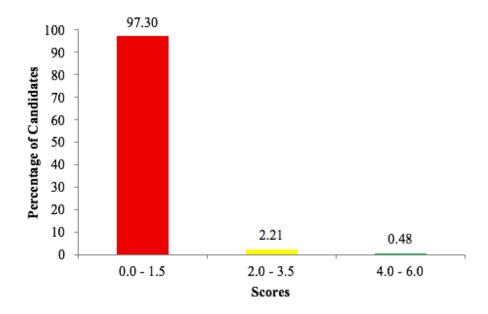


Figure 8: Candidates' Performance in Question 8.

The data presented in Figure 8, shows that this question had a weak performance because only 2.68 percent of the candidates scored from 2 to 6 marks. Among the 97.30 percent of candidates who scored low marks, 92.43 percent scored 0. In part (a), these candidates were unable to correctly apply the formula $S_n = \frac{G_1(1-r^n)}{1-r}$ to find the number of terms as required. The

candidates were instead applying incorrect formulae, such as $S_n = \frac{G_1(r^{n-1})}{r-1}$,

$$S_n = \frac{G_1(1-r^n)}{r-1}$$
 and $S_n = G_1r^{n-1}$ and hence ended up with wrong answers

(see Extract 8.1). Some of the candidates were able to recall the formula but then substituted incorrect data, whereas others substituted the correct data to

get
$$\frac{31}{16} = \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}}$$
 but could not find the value of n , because they lacked

knowledge and skills of solving equations requiring application of the laws of exponents.

In part (b), most of the candidates failed to find the number of integers between 14 and 1000 which are divisible by 17. The majority did not

recognize that the given integers form an arithmetic progression with the first term $A_1 = 17$, common difference d = 17 and the last term $A_n = 986$, and therefore they were required to find the value of n in the equation $986 = 17 + 17 \times (n-1)$. Further analysis shows that some of the candidates did not answer this part and others used incorrect data, for example $A_1 = 14$ and $A_n = 1000$. Some of the candidates applied incorrect formulae, for example $A_n = A_1(n-1)d$ and inappropriate concepts for example determining the Lowest Common Multiple (LCM) and Greatest Common Factor (GCF) of 14, 17 and 1000. Generally, these candidates lacked knowledge and skills on the application of arithmetic progression.

Extract 8.1

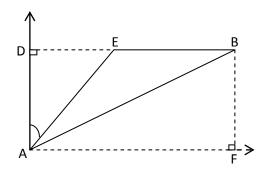
(8-)	(a') Solh
	$G_1 = 1$
	(a') $50 \ln 6 = 1$ $r = \frac{1}{2}$ $6n = \frac{31}{16}$
	Gn= 31/
	/(6
	Gn=Girn=1
	$\frac{31}{16} = \frac{1 \times 10^{-2}}{2}$ $\frac{31}{16} = \frac{1}{2} \times \frac{10^{-2}}{2}$
	1/16= 1×/2
	31 dyn-1
	16 2
	$\frac{31}{16} = 2^{-1(n-1)}$ $\frac{31}{16} = \frac{2^{-1n+2}}{1}$
	31/562-In+1
	166 1
	16 × 2 - 1 + 2 = 31
	24 × 2-7+1 = 31
	4+-11=0
	4+1 = 7
	nes.

(8.)	b)
	14 and 1000
	An 2 A, + (n-1) d
	1000 = 14+(n-1)17
	1000 = 14+17n-17
	12
	1000 = 14-17 +17n
	= -3+17n
	1000-3 = 179
	997 = 1/m 17- 1/F
	17 17
	n = 52 tems

Extract 8.1 shows how a candidate failed to correctly use the concepts of arithmetic and geometric progressions in answering the question.

There were few candidates (0.2%) who correctly answered this question. Those candidates were able to apply the correct formulae for geometric and arithmetic progressions as shown in Extract 8.2.

Extract 8.2


. 81	a) So = 3/16	5n= G1. 1-r
	(6	1-r
	61= 1	$31 = 1 \times 1 - (V_2)^n = 1 \times 1 - 2^{-n}$
	r = 1/2	16 1-1/2 1/2
		31 - 1-2-
1119		16 1/2
		31 × 1/2 = 1 - 2-n
		161
		31 = 1-2 ⁻ⁿ
1220		32
		$3^{-n} = 1 - 31 = 32 - 31 = 1/32$ $32 32 32 32$
, T. 17	*** * * * * * * * * * * * * * * * * *	
)		2 ⁻ⁿ = 1/25 = 2 ⁻⁵
1-1-		
	•	2 ⁻ⁿ = 2 ⁻⁵
		-n = -5
		n = 5
		- number of terms is 5

	b.) It will be an arthimetic flogresion.
	A_= 17 d= 17 17 1000 = 58 rem
No. 100	Az = 34
	58x17 = 986 So, An = 986,
8 1.000	59 x 17 = 1003
	An= A1 + (n-1) d
7.53	986 = 17 + 17(n-1) = 17 + 17n-17
	986 = 1 <u>7</u> n
	17 c 17
7 (2)	58 = n ·
	There are 58 intergers.

Extract 8.2 shows a response of a candidate who demonstrated good understanding on the application of the concepts of arithmetic and geometric progressions in solving the question.

2.9 Question 9: Trigonometry

The question was as follows: Using the following figure, where AE = 20m, $EB = 20\sqrt{2}m$ and $D\hat{A}E = 45^{\circ}$, find: (a) the lengths DE, AD and AB; and (b) the area of triangle ABE, leaving the answer in surd form.

The analysis of data shows that the majority of candidates who attempted this question got low scores ranging from 0 to 1.5 out of 6 (see Figure 9).

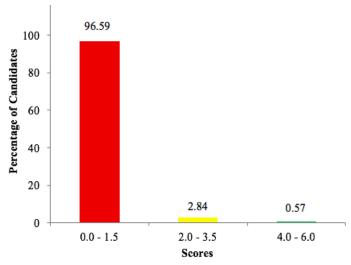
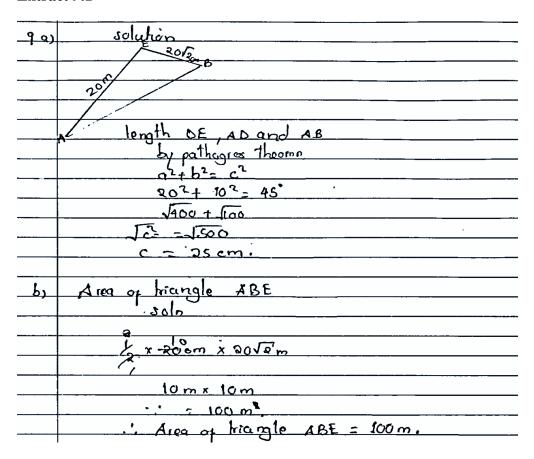


Figure 9: Candidates' Performance in Question 9.

In Figure 9, only 3.41 percent of the candidates scored from 2 to 6 marks. Generally, the performance in this question was weak.

In part (a), many candidates were able to use the concept of trigonometric ratios of *sine* and *cosine* to obtain the equations, such as $\sin 45^\circ = \frac{AD}{20}$ and $\cos 45^\circ = \frac{DE}{20}$ that were needed in answering this part. It was noted that some of them could not get the required lengths DE and AD from these equations because they used incorrect values for $\sin 45^\circ$ and $\cos 45^\circ$ whereas others used correct values but performed incorrect calculations.


The part on finding the length AB was not answered correctly by most candidates. Some of them used incorrect trigonometric ratios, for example $\sin 45^{\circ} = \frac{14.142}{AB}$, $\sin 135^{\circ} = \frac{AB}{20}$. Others used incorrect concepts and formulae, for example $AB^2 = AE^2 + EB^2$. These candidates wrongly considered triangle AEB as a right-angled triangle. The candidates were supposed to consider triangles ADB or AFB and applied either the Pythagoras theorem $AB^2 = AD^2 + (DE + EB)^2$ or the cosine rule, that is, $AB^2 = AE^2 + EB^2 - 2(AE)(EB)\cos(A\hat{E}B)$.

In part (b), many candidates also failed to find the area of triangle ABE as they were not able to correctly recall and apply one of the following formula:

Area of triangle
$$ABE = \frac{1}{2} \times AE \times EB \times \sin(A\hat{E}B)$$

Area of triangle $ABE = \frac{1}{2} \times base(b) \times height(h)$. The candidates were substituting incorrect data in these formulae, for example some considered the height of triangle AEB as 20 m instead of $10\sqrt{2}$ m. Extract 9.1 is a sample answer showing how the candidates failed to answer this question.

Extract 9.1

Extract 9.1 shows that a candidate could not apply the Pythagoras theorem and used incorrect data in finding the area.

On the other hand, 419 (0.13%) candidates managed to correctly answer this question. A sample solution from one of the candidates is shown in Extract 9.2.

Extract 9.2

9 6							
9 6)	Deity given: AE = 20m, EB = 2012 m, DAE = 450						
	Sin 45° = DE						
	20m						
	450 20m DE = 20m x sin 450						
	DE= 20mx 0.7071 or 20mx 12/2						
	DE = 14.142m or 1012m The length DE is 14.142mor 1012m. Cos 45° = AD 20m						
7.5	AD = 20 m x 0.7071 or 20 mx 15/2						
	AD = 14.142m or 1012m						
	i. The length AD is 1012 m or 14.142m.						
	3017 m						
	DB = DE+ EB						
	DB= 1052m+ 2052m						
11	105m DR = 3052 m						
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
	From Puthagoras theorem:						
- ,	From Pythagoras theorem:						
	AB = (10/2 m) + (30/2 m)						
	AB' = 200m2 + 1800m2						
	AB = 2000m						
	AB = 2015 m or 44.72 m						
	The length AB is 44.72m or 2015 m;						
	The control of the co						
(b)	E 2017 m B Frm;						
(9)	Area = 1/2 absin C						
1	Area = 1/4 x 20m x 2012 m x sin 5350						
	HAG: 20012 M X 12 JIN 45						
	Area = 200 /2 m2 x 12						
	Λ (Δ						
	Area = (100 x 2) m2						
	Area = 200 m2 = 40(2 x 10 fz)m						
	= (1015)						
	i. The area of thiangle ABE is (1012 m)2						

Extract 9.2 shows a response of a candidate who correctly applied the Pythagoras theorem and the concepts of trigonometric ratios in finding the required lengths. The candidate also applied the formula for finding the area correctly.

2.10 Question 10: Quadratic Equations

The question had parts, (a) and (b). In part (a), the candidates were required to solve the equation $4x^2 - 32x + 12 = 0$ by using the quadratic formula. In part (b), they were asked to find how old was Anna and Jerry, given that Anna was 6 years younger than her brother Jerry and the product of their ages was 135.

The percentage of candidates who scored from 0 to 1.5, 2 to 3.5 and 4 to 6 is shown in Figure 10.

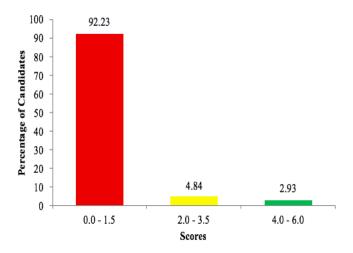


Figure 10: Candidates' Performance in Question 10.

The data in Figure 10 shows that 7.77 percent of the candidates scored from 2 to 6 marks; therefore this question had a weak performance. The weak performance in part (a) was mainly due to candidates' inability to correctly recall and apply the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ in solving the equation $4x^2 - 32x + 12 = 0$. For example, some of the candidates wrote it as $x = -b \pm \frac{\sqrt{b^2 - 4ac}}{2a}$, $x = \frac{-b\sqrt{b^2 - 4ac}}{2a}$ and as a result ended up with incorrect solutions. However, several candidates were able to recall and write the formula correctly but substituted incorrect values for either a, b or

c. For example, some of them ignored the negative sign on b = -32 when substituting it in the formula. Additionally, other candidates solved the given

equation by factorization and completing the square methods, which were contrary to the given instructions.

In part (b), most candidates were unable to correctly formulate the equation [x(x+6)=135] that represented the word problem; where x was Ann's age and (x+6) was Jerry's age. Some of the incorrect equations they formulated include: x+(x-6)=135, $6x\times y=135$, $x\times 7x=135$ and 6x+x=135. Other candidates performed meaningless calculations using the numbers that were given in the question. Those candidates lacked knowledge and skills of solving word problems. Extract 10.1 represents a sample answer from one of the candidates.

Extract 10.1

10	(a)						
	from b ± 1 b2 + 4ac						
-	<i>&a</i>						
	32 + ((32) 2 + 450						
	899						
	6 ± 1024 f 4x4x18						
	2×4						
	b + 1024 + 192						
	8						
	b ± J 1816						
	. &						
	32+11816 2 32-11816						
	8 8						
	6) &(n						
	Gyear younger than her brother						
	935 sum of their ages						
	135 76						
	1/2/1						
	135 + 2 = 67.						
	135-67 = 68						
	-87-6						
	the brotter has 90 year and Anna 13 65.						

Extract 10.1 shows a response of a candidate who wrote the quadratic formula wrongly and could not formulate the equation(s) that represents the word problem.

However, there were few candidates (0.92%) who correctly answered this question. Extract 10.2 represents a sample solution of one of the candidates.

Extract 10.2

10.	Solution.					
30.	(a) Equen; 4x2-32x+12=01					
	$x^{2} - 8x + 3 = 0$					
	From the guidted formula?					
	From the quadratic formulas					
	De					
	→ × = 8± N64-12					
	3					
	>> x = 8±152					
	२					
	$\Rightarrow x = 8 \pm 3\sqrt{13} = 4 \pm \sqrt{13}$					
	2					
	$\frac{2}{1.2}$					
	(b) Let; x be Jerry's age.					
	→ x-6 = Anna's age.					
	Then; $x(x-6)=135$.					
	$= \frac{1}{2} \times \frac{1}{2} - 6 \times \frac{1}{2} = \frac{1}{2} $					
	⇒ x2-6x-135 =0.					
	$\Rightarrow x^2 + 9x - 13x = 0$					
	$7 = \frac{(x+q)-19(x+q)=0}{(x-1s)(x+q)=0}$					
	x = (x-15)(x+9) = 0.					
	$\Rightarrow x = 15 \text{ or } -9.$					
30,	(b) But; Age is aways positive.					
	\rightarrow \sim = 1.6 .					
	Then; Jerry's age = 15 years					
	Then; Jetty's age = 15 yeats and Anna's age = 156					
	= 9 years.					
	- 9 years. i. Anna is 9 years old while Jerry is Is yearsold.					
	Jetty is IE yearsold.					

Extract 10.2 shows a response of a candidate who was able to apply correctly the quadratic formula and translated the word problem into a quadratic equation, thus solving it correctly by using the method of spliting the middle term.

2.11 Question 11: Linear Programming

The question was as follows: Zelda wanted to buy oranges and mangoes for her children. The oranges were sold at sh. 150 each and mangoes at sh. 200 each. She had to buy at least two kinds of each fruit but her shopping bag could not hold more than 10 fruits. Determine the number of each fruit Zelda had to buy for the shop owner to realise maximum profit if the owner of the shop made a profit of sh. 40 on each orange and sh. 60 on each mango.

The question was optional and was attempted by 110,243 candidates. The performance of candidates in this question is summarized and shown in Figure 11.

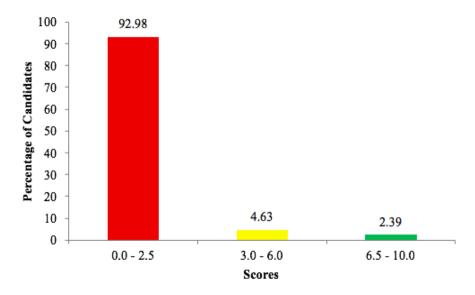


Figure 11: Candidates' Performance in Question 11.

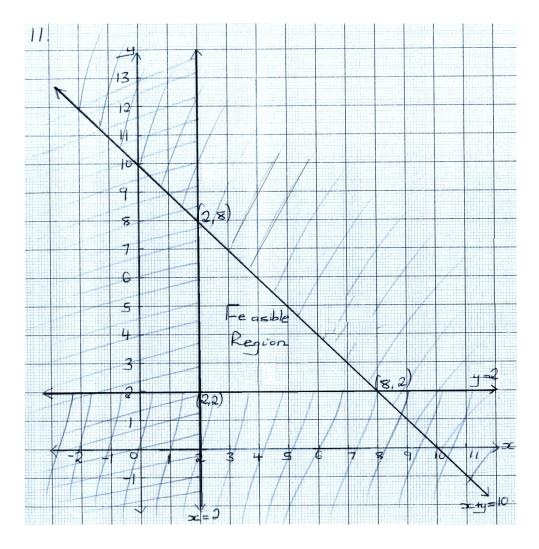

Figure 11 shows that only 7.02 percent of the candidates scored from 3 to 10 marks, therefore the question had a weak performance. The majority of candidates (92.98%) scored low marks and notably 35.63 percent scored 0. The analysis of candidates' responses shows that the following were the reasons that contributed to the weak performance in this question:

- (a) Incorrect naming of the decision/unknown variables. For example, some of the candidates wrote "let x be oranges and y be mangoes" instead of writing "let x be the number of oranges and y be the number of mangoes."
- (b) Inability to formulate the correct objective function. Many candidates wrongly used the given selling prices and as a result obtained the incorrect objective function f(x, y) = 150x + 200y. They were supposed to use the given profits in order to obtain the required objective function f(x, y) = 40x + 60y.
- (c) Inability to formulate the constraints or linear inequalities from the given linear programming problem. For example, one candidate formulated the inequalities as $40x+60y \ge 10$, $x \ge 0$, $y \ge 0$ and another candidate as $150x+200y \ge 700$, $2x+2y \le 10$, $x \ge 0$, $y \ge 0$. The correct inequalities were $x+y \le 10$, $x \ge 2$, $y \ge 2$.
- (d) Failure to represent the linear inequalities graphically. A few candidates formulated correct linear inequalities but were unable to represent them graphically, hence failed to obtain the required feasible region.
- (e) Inability to correctly substitute each of the corner points into the objective function. A few candidates got the correct corner points but failed to correctly substitute them into the objective function. Hence, they were unable to conclude on the number of oranges and mangoes that would be bought to get maximum profit.

Extract 11.1 represents a sample solution of a candidate who failed to answer this question.

Extract 11.1

<u> 11</u>	Soln.					
	let x to be the number of mangoes'					
	y to be the number of oranges					
	Construction of Inequality.					
	2x + y \(\) . Go					
	× + 2y ≤ 40					
	XΣO					
	5≥ 0					
	Objective Function: \$ 200x+150y.					
	2x+y=60					
	× 0 80.					
	y 60 0°					
	X + Qy = 40					
	x 0 40'					
	9 20 0					
_	Conner point Objective Function 2000x 1150y					
	\$\langle \(\langle \) \(\lan					
	B(0,20) O + 150(20)=3000!					
	c (0,0) 0 + 0' = 0					
	! the freet of each. kind . to Maximum. profit.					
	15' 28 mangoes' and 10 oranges (28, 10)					



Extract 11.1 shows a sample solution of a candidate who formulated incorrect constraints and objective function.

However, 1,317 (0.41%) candidates provided correct answers. Extract 11.2 shows the work of one of the candidates.

Extract 11.2

11.	solution
r en	Let the number of eronges be x
1.5-	the number of mangers be y
	x + y = 10 (1)
	x > 2 (i)
7.1	y / 2 (ii)
n. F	Objective function:
	f(x,y) = 40x + 60y -> maximum
	$\chi + \mu \leq 10$
	x = 10
	y = 10
	x 2, 2
	u 7 2
	From the graph; corner points are
	(2,8), (8,2), (2,2)
	f(x,y) = 40x+60y -> maximum
	4 (2,8) = 40 (2) + 60(8) => 560
	(8,2) = 40(8) + 60(2) = 440
	((2,2) = 40 (2) + 60 (2) = 200
	(2,8) = maximum
	. Zolda should buy 2 cranges and
	8 mangees for the chop owner to
	roalico maximum profit.

Extract 11.2 shows a response of a candidate who was able to formulate and represent the linear inequalities graphically; identify the corner points of the feasible region; and determine the number of oranges and mangoes that should be bought.

2.12 Question 12: Statistics

The candidates were given that;

The heights of 50 plants recorded by a certain researcher are given below:

	_			-				_	
56	82	70	69	72	37	28	96	52	88
41	42	50	40	51	56	48	79	29	30
66	90	99	49	77	66	61	64	97	84
72	43	73	76	76	22	46	49	48	53
98	45	87	88	27	48	80	73	54	79

In part (a), they were required to copy and complete this tally table for the data given above.

Height (cm)	Tally	Frequency
21-30		
31-40		
41 – 50		
51 - 60		
61 – 70		
71 – 80		
81 – 90		
91 - 100		

Using this table, they were required in part (b) to draw a histogram for the heights of the plants and in part (c) to find the mean height of the plants without using the assumed mean method and in part (d) to find the median of the heights of the plants.

Question 12 was optional, and it was attempted by 267,777 (84.35%) candidates. The candidates' performance is presented in Figure 12.

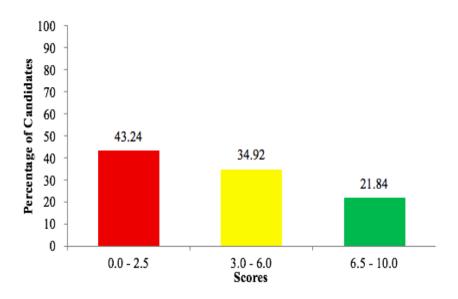
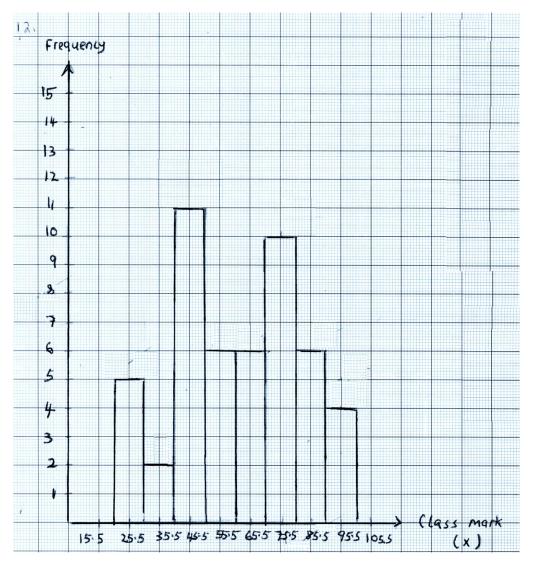


Figure 12: Candidates' Performance in Question 12.


Figure 12 shows that 56.76 percent of the candidates scored from 3 to 10 marks. Therefore the question had an average performance. Notably 21.84

percent got high marks and among them 0.94 percent scored full marks. Most of the candidates in this category managed to correctly complete the tally table; draw a histogram for the heights of the plants; calculate the mean and median of the heights of the plants. Extract 12.1 shows a sample solution of one of the candidates who performed well in this question.

Extract 12.1

12.	a) FREQUENCY DISTRIBUTION TABLE					
	Hoight (cm)	Ta	lly	fie	quency	
	21-30		HT .		5 ੨	
	31 - 40		11	2		
	41-50	411	HH 1	11		
	51-60	##	-1	6		
	61-70	##	- 1		6	
	71-80	JHT.	<u> 411</u>		10	
	81-90	##	<u> </u>		6	
	91-100				4	
	Ь.					
1	Height (cm)	frequency	Classmork (4)	£x.		
	21 - 30	5	25.5	127.5	<	
	31 - 40	2	35.5	71		
	41-50	11/2	45.5	500.5		
	51_60	6	55.5	333		
	. 61-70	6	65.5	393		
	11.80	10	75.5	755		
4 (0)	81 -90	6	86.5	513		
4	91.100	4	95.5	382		
3		£f=50	(\$ <	Sfx 3075		
	c, Mean	= 2f×	100000-00			
	·		2 f		_	
12	7	= 30-	15,			
			50			
		= 61	.5			
	Mean		·5cm			

12.	d, Median = Li + / 1/2 - nb) i
	nw)
	Where Liz Real lower limit of
	nuedian closs = 60.5
	N = Total frequency = 50 : So = 25
	5
+	. nb = frequency below needian
	class = 24
	nw = frequency within nection
	day = 6
	i = (lassinteral = 10
	= 60.5 + (25-24) 10
	(6)
	= 60.5 + (1)10
	(6)
	= 60.5 + 1.67
	= 62.17
	Median is 62.17 cm

Extract 12.1 shows a response of a candidate who correctly answered the question.

Figure 12 also shows that 43.24 percent of the candidates scored low marks from 0 to 2.5 out of 10. Failure to give correct responses was contributed by the following factors.

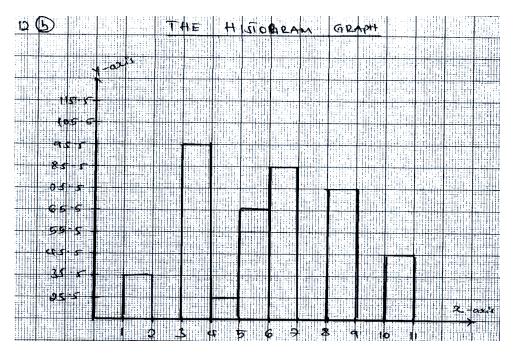
In part (a), the candidates lacked knowledge and skills in representing data in frequency distribution tables. Some of these candidates incorrectly entered the class marks in the tally column whereas others incorrectly tallied the marks. These mistakes also led to incorrect values in the frequency column and in turn incorrect solutions to parts (b), (c) and (d).

However, some candidates prepared correct frequency distribution tables in part (a) but could not correctly drew the histogram in part (b). For example, there were candidates who used incorrect frequencies, incorrect class marks and used upper real limits on the horizontal axis instead of class marks. Further analysis shows that other candidates drew frequency polygons, bar graphs and cumulative frequency curves which were contrary to the requirements of the question.

In part (c), some of the candidates failed to recall the correct formula for finding the mean which consequently led into wrong answers. However, some candidates managed to recall it. That is, $Mean = \frac{\sum fx}{\sum f}$ but failed to correctly calculate the values of $\sum fx$ and $\sum f$ while others used incorrect data. Furthermore, there were candidates who applied the assumed mean method, that is, $Mean = A + \frac{\sum fd}{\sum f}$, contrary to the instructions given in the question.

In part (d), there were candidates who correctly completed the tally table in part (a) and correctly recalled the formula for finding the median, that is,

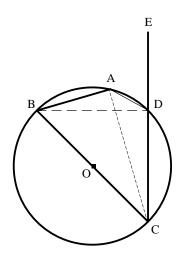
$$Median = L + \left(\frac{\frac{N}{2} - f_b}{f_m}\right)i$$
 but failed to obtain the required answer. Most of


them could not identify the median class. Some were not able to correctly find the lower class boundary (L) of the median class, class width (i), sum of the frequencies below the median class (f_b) and the frequency for the median class (f_m) . Other candidates considered the modal class instead of the median class whereas a number of candidates used incorrect formulae,

such as
$$median = L + \left(\frac{t_1}{t_1 + t_2}\right)i$$
 and $median = L_1 + \left(\frac{n}{2} - \frac{n_b}{n_w}\right)$. Extract 12.2 is

a sample solution from one of the candidates who failed to answer this question correctly.

Extract 12.2


	10 11				
12	@ Saution.				
	2				
	Height (cm)	ially	Fraguency.		
		•			
	21-30	25-5	2		
	31-40	35.5	a a		
	41 - 50	45.5	u		
	51 - 60	55.5	6		
	61 - 70	65.5	5.		
	71-80	75.5	lo		
	81-90	\$5.5	7		
	.91 -100	95.5	4		
		= 38815	4250		
	0				
	Dasta Solu	tion.			
	X =	Efd			
	$X = \mathcal{E} f d$				
		38815			
		50			
			n = 9763		
		1,444	1100	1	
	(d) //	. \;			
	L=(f/2+fb)				
	10.5	-11/2 + 7/5			
	45.5 = (1/2+7)				
	 				
	1	Odian - 220.			
	1	odian = 776.	<u> </u>		

Extract 12.2 shows a sample solution of a candidate who did not understand the meaning of 'tally' and used incorrect data and formulae in finding the mean and median. He/she could not correctly draw the histogram.

2.13 Question 13: Circles

In the following figure, the candidates were given that, BC is a diameter of the circle, O is the centre of the circle and side CD of the cyclic quadrilateral ABCD is produced to E.

The candidates were required to: (a) name, with reasons, the right angles in the figure, (b) show that $A\hat{D}E = A\hat{B}C$ and (c) find (i) the value of $A\hat{B}D$ (ii) the lengths AB and BD, given that $CB = 10 \, \text{cm}$, $A\hat{D}E = 60^{\circ}$ and $C\hat{A}D = 25^{\circ}$.

This question was attempted by 29,183 (9%) candidates, implying that the majority did not opt it. The candidates' performance in Figure 13 shows that only 8.31 percent scored from 3 to 10 marks, thus the question had a weak performance.

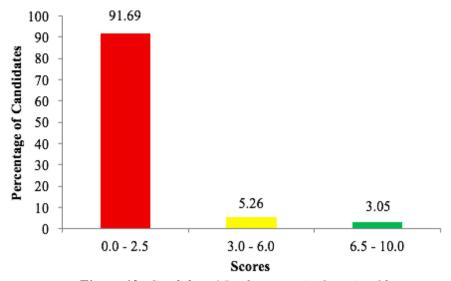
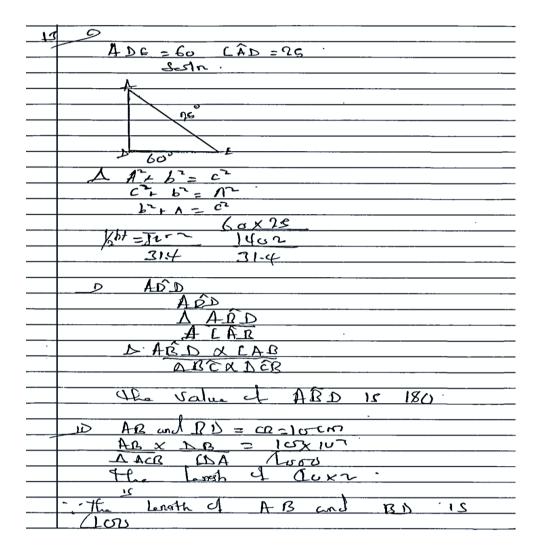


Figure 13: Candidates' Performance in Question 13.

In part (a), majority of the candidates failed to correctly name the right angles in the given figure indicating that they did not understand the properties of the angles inscribed in a semi-circle. The candidates gave acute/obtuse angles, such as ABC, BAD and ADC instead of the right angles BAC and BDC. Other candidates named the right angles correctly but failed to give reasons to support their answers.


In part (b), most candidates failed to correctly show that $A\hat{D}E = A\hat{B}C$. They could not make use of the fact that 'opposite angles in a cyclic quadrilateral are supplementary and the angles on one side of a straight line add up to 180° .'

The candidates were unable to obtain the equations: $A\hat{B}C + A\hat{D}C = 180^{\circ}$ and $A\hat{D}E + A\hat{D}C = 180^{\circ}$ from the given figure; that were necessary in carrying out the proof.

Likewise in part (c)(i), most candidates failed to correctly apply the circle properties. In particular, they could not apply the property stating that the exterior angle of a cyclic quadrilateral is equal to the opposite interior angle in obtaining the result $A\hat{D}E = A\hat{B}C = 60^{\circ}$ and the property stating the angles in the same segment are equal in obtaining the second result $C\hat{B}D = C\hat{A}D = 25^{\circ}$. Failure in applying these properties led to candidates writing solutions that were not related to what they were asked. Part (c)(ii) was also poorly done as the candidates lacked knowledge and skills to apply either the definitions of trigonometric ratios or the sine rule. Extract 13.1 shows a sample work of one of the candidates who failed to correctly answer this question.

Extract 13.1

11	a Angle of this figure triangular Angles
	D ASE = ARC
	$AD = A\hat{R}C$
	AFR + ACB RAD = CAR
	AÉR = DÉA
	ARC = CDA ARC = CBR
	ABC = DB $ACR = CBB$
	AADB AEC

Extract 13.1 shows a sample solution which is meaningless, indicating the candidate lacked knowledge on the tested concepts.

In this question, 127 out of 29,183 candidates who answered it, managed to give the correct responses. A sample solution from one of the candidates is shown in Extract 13.2.

Extract 13.2

13.	/E
	The state of the s
	/ T V 0
	0 100
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	· Colorent appears that
	(a) CÂB = 90° (k a tight angles). CDB = 90° (1s a not angle) This is because the angle subtended at the creamform on the diameter is 90° Also. The angle subtended at the creamform is half that Subtended at the latter. That is AOC = 2 (CDB) 180° = 2 CBB CBB = 90°
7000	(a) CAB = 90° (ka right anglex).
	$C\hat{D}B = 90^{\circ}$ (1s a night angle)
	This is because the angle subtended at the crownfor
	ace by the diameter is 90°
	Also. The angle subtended at the circumference is half that
	Subtended at the centre. That is
	$A\delta c = 2(c b)$
	/80° = 2 chs
	c6B = 90°
	10c = 2 (cAB)
	/80° = 2(cÂR)
	$A\hat{o}c = 2(c\hat{A}R)$ $180^{\circ} = 2(c\hat{A}R)$ $C\hat{A}R = 90^{\circ}$
	Required to show $ABE = ARC$ (b). $CBA + CDA = 180^\circ - Sum$ of anoles in a cuclic $CBA = 180^\circ - CBA$ $CBA = 180^\circ - CDA (-1)$ $ABC = 180^\circ - CDA$
	b). CBA + CDA = 180 Sum granoles in a cuclic.
	CDA = 180° - CBA
	$C\hat{B}_{A} = 180^{\circ} - C\hat{D}_{A} \cdot - \cdot (\cdot 1)$
	ABC = 180° - CDA
	CBA+ ABE = 180° Jum q angles in a straight line
	ADE = 160 - CDA (ii)
	By Companies (i) and (ii)
	CDA + ADE = 180° - ·· Jum of angles in a straight line ADE = 180° - CDA - ·· (ii) By Companies (i) and (ii) 180°-CDA = 180°-CDA - ·· ABC = ADE, hence shown
	.'. ABC = ADE hence shown

(e) (ii) Cos 60° = BA	(
10	× .
1/2 × 8A	
18	
2 B A = (0	
B A = 5 cm	
Sint 7 BD	7 1
1 10	· V.
BD = losingco cm	P
BD = 9.063 cm.	7 7
	1 -
(1) ABD = ACD = 850	
· 1BD = 35°.	
hocauso.	
· ARD = APD	
Then: ABD + 30" + 90" + 2 50 = 180 -	· Sum of opp of
	a cuele é
ABD = 180-90-15	p = 1
ABD = 90-CT	3 1 1
A60 = 350	1001

Extract 13.2 shows how a candidate was able to correctly apply the circle properties and trigonometric ratios for sine and cosine in answering this question.

2.14 Question 14: Accounts

This question had parts (a) and (b). In part (a), the candidates were required to define a trial balance and state its main purpose. In part (b), it was given that; On January 1^{st} 2015, Semolina Women Group started a business with capital in cash 2,000,000/=

- January 2 Purchased goods for cash 1,400,000/=
 - 3 Sold goods for cash 1,000,000/=
 - 6 Purchased goods for cash 600,000/=
 - Paid for cash for rent 220,000/=
 - Paid for cash for wages 220,000/=
 - Sold goods for cash 620,000/=

Using these data, the candidates were required to prepare: (i) the cash account and balance it and (ii) the trial balance.

This question was answered by 208,048 (65.54%) candidates. The percentages of candidates who scored low, average and high marks are shown in Figure 14.

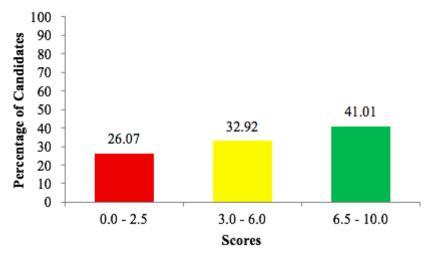


Figure 14: Candidates' Performnace in Question 14.

Figure 14 shows that 73.93 percent of the candidates scored from 3 to 10 marks, therefore the question had a good performance. In this question, 41.01 percent scored high marks. Most candidates in this category were able to define the term "trial balance" and state its main purpose. They were also able to correctly prepare a cash account and a trial balance as illustrated in a sample answer in Extract 14.1.

Extract 14.1

14-	(a).) Trial balance is a Statement that shows
	a list of debit and credit balances of accounts
	extracted from various ledgers to check the
	arithmetical accuracy of double entry recording
	at any given date, usually at the end of the year
-	.) The main purpose of Trial balance is to
Ÿ	theck the arithmetical accuracy of double entry

a	tion	to be	used	in tree	e as	so used final ac	conut	PUB 3	bal
	sheet.								
bi,									
1	DR			CASH	Accou	NT L.1	×		С
	Date	Particu	lar Folio				y folio	Amo	unt
	1-1-2015	Capita	1 2	2,000,000	2.1.2010	Purchacec	3	1,40	0,000
	3-1-2015		4	0.4	a .	Purchasos	1	600	,000
	15.1.2010		4.	620,000			S	221	0,000
					i i	Wagos	6	1	000
		W			30 - 1 - 2015	-	c/d		
				3,620,000				3,620	757
	1.2.2015	Balana	b/d	1,120,000			-		
					-				-
					en e			-	
	[-	-
11,		7	RIAL	BALANC	F AS	AT 30H	Jon	2015	
		SIN	PARTI	CULARS	folio		CF		
	-	1.	Cash			1,180,000		-	
		2.	Copita	F			2,000	,000	-
	1 -	3.	Purcho			2,000,000	.:		
		4.	Sales				1,620	,,000	
		5.	Ront			220,000			
	1 3	6.	Wages		-	220,000			
			TOTAL			3,620,000	3,620	,000	

Extract 14.1 shows a sample solution of a candidate who correctly answered the question.

Figure 14 also shows that 26.07 percent scored from 0 to 2.5 out of 10 marks and among them 13.41 percent scored zero. In part (a), most of them could not correctly define a trial balance and state its main purpose. For example, one of the candidates wrote "a trial balance is the book of account which used to determine if the balance are balanced and its main purpose is to determine the balance of transaction if are balanced"; another candidate wrote "trial balance is the balance brought down by comparing both sides of profit and loss and its main purpose is to check the balance profit or loss of the company." These responses show that the candidates did not understand the concept of trial balance.

In part (b), most of the candidates who scored low marks were unable to correctly prepare the cash account and trial balance. They posted some of the transactions on the wrong sides of the cash account and trial balance. For example in the cash account, they posted the capital or sales on the credit side; and purchases, wages or rents on the debit side. Also, some candidates failed to correctly balance the cash account and the trial balance. Additionally, there were some candidates who opened the ledgers instead of preparing cash account and others who prepared a balance sheet or a trading, profit and loss account instead of the trial balance. Extract 14.2 is a sample solution of a candidate who failed to correctly answer this question.

Extract 14.2

	1-11	1		414 0	+ 0	7-7:		
14	Trial balance; Is							
	er Into change Value of credit to doubt							
	/,	~ 41	or Cash	account.				
	Main purpose	:/2	to deto	emining que	s los	s or		
		ęn	the for the	ading.				
		1	-\-					
-	146 (46)	11 4		AND BAT AND				
1 (P)	(1) ITE CAS	7 2101	CAPITA	AND BALANCE	10F3	ZMOLINE		
	Dr		CAPTIF	176		Tox		
	Date porticul	1	\$0.00.00	Det 06 50	L T	CY		
	July Propiers	+=	Pivuotus			Amont		
		+		1 my capital		20000		
-		<u> </u>		 				
	1 010	CH	ASED A	// .				
	DV	<u> </u>	1320 17			CV		
	Date particily	5	-A-24 (D. F	Date partie	c T			
-	2 Janualy Parchased				W	7,11001		
	. Zoming Par Crases		60 0000					
			800000					
			900	<u> </u>				
		PA	ID WAG	ES AK.				
	DV		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Cr		
	Date puticia	F	Anconf	Date porticio	F	711 -		
	15 Jimy paria			150im puid		280000		
	26 Fruit Phus			Ejn print		20000		

146)	THE TRIAL BALANCE OF SEMOLINA WOMEN II GROUP STARTED A BUSNES OF CAPITAL IN CASH					
	Name of account	Dr	cr			
	Capita	2000 000 X	800000			
	prochased.		200000			
	pard wages		000,000			
	Sold.		520000 ;			
	phil	220000				
	Rtc.	420000	4200000			

Extract 14.2 shows a solution of a candidate who lacked knowledge and skills on the tested concepts of cash account and the trial balance.

2.15 Question 15: Matrices and Transformations

This question had three parts, (a), (b) and (c). In part (a), the candidates were required to find the inverse and identity matrices of $A = \begin{pmatrix} 6 & 4 \\ -2 & 5 \end{pmatrix}$. In part (b), they were given that triangle OAB had its vertices at O (0, 0), A (2, 1) and B (-1, 3), and they were required to find the vertices of the triangle if the triangle was enlarged by $E = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and then translated by $T = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$. In part (c), the candidates were required to draw, on the same xy - plane, the triangle OAB and the images after being (i) enlarged (ii) translated.

This question was opted by 172,551 (54.35%) candidates. The performance of the candidates is shown in Figure 15.

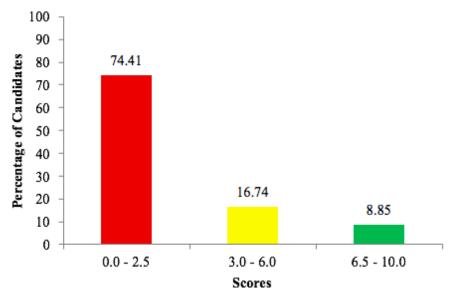


Figure 15: Candidates' Performance in Question 15.

Figure 15 shows that 25.59 percent of the candidates who attempted the question scored from 3 to 10 marks, implying that the question had a weak performance.

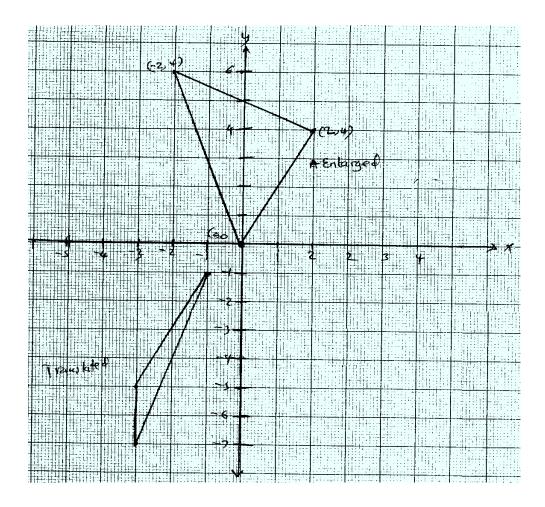
Figure 15 also depicts that 74.41 percent scored from 0 to 2.5 marks. Further analysis of the data revealed that 48.43 percent scored 0, indicating that these candidates had inadequate knowledge on the tested concepts.

In part (a), most candidates failed to correctly find the determinant of matrix A. For example, some wrote $|A| = 6 \times 5 - 2 \times 4 = 22$ instead of writing $|A| = 6 \times 5 - (-2 \times 4) = 38$. However, other candidates managed to correctly find the determinant but failed to find its inverse. Those candidates lacked understanding on how to find minors and cofactors. For example some wrote

$$A^{-1} = \frac{1}{38} \begin{pmatrix} 5 & 4 \\ -2 & 6 \end{pmatrix}$$
, while others wrote $A^{-1} = \frac{1}{38} \begin{pmatrix} 6 & -4 \\ 2 & 5 \end{pmatrix}$ instead of writing

$$A^{-1} = \frac{1}{38} \begin{pmatrix} 5 & -4 \\ 2 & 6 \end{pmatrix}$$
. Majority of the candidates could not use the property

 $A^{-1}A = I$ to find the identity matrix I.

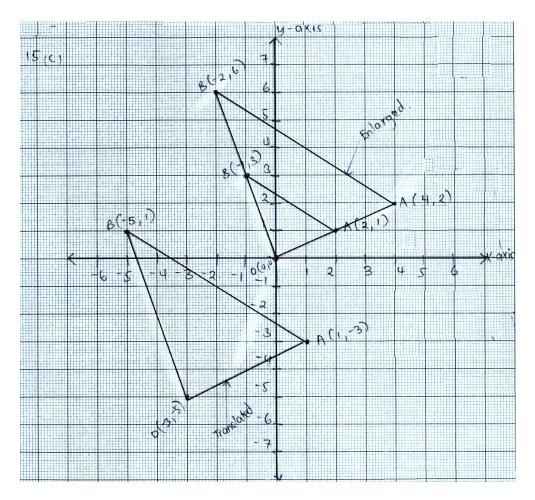

In part (b), majority of the candidates were unable to correctly find the image of the vertices of triangle OAB after being enlarged and then translated. They were unable to realize that the image of each of the vertices were to be obtained by premultiplying the points by the enlargement matrix and then add the result to the translation vector. For example, to get the image of point O, they were to follow the steps: $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = O'(0, 0);$ $\begin{pmatrix} 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} -3 \\ -5 \end{pmatrix} = \begin{pmatrix} -3 \\ -5 \end{pmatrix} = O''(-3, -5).$ Furthermore, other candidates premultiplied the vertices of the enlarged triangle by the translating matrix $T = \begin{pmatrix} -3 \\ -5 \end{pmatrix}$, instead of adding those vertices to the translating matrix to get the correct answer. Further analysis of candidates' responses shows that some candidates determined the image of triangle OAB under the translation vector and then enlarged it. This indicates that the candidates did not understand the requirements of the question. Failure of many candidates in answering part (b) also led into incorrect solutions to part (c). Extract 15.1 shows a sample

solution of one of the candidates who failed to correctly answer this question.

Extract 15.1

IS (a) Soln
A-1 = 1 (5 -4)
(A) (2 6)
$\frac{\text{But } A = 6xs - (-2x4)}{= 30 - 8}$
= 30 - 8
= 22
f'=1 $(5-4)$
22 (2 6)
:. A = 5/22 -2/11
$\frac{\sqrt{y_{11}-3y_{11}}}{\sqrt{y_{11}-3y_{11}}}$

	The identity of $A = IA$ Where $I = (I \cup I)$
	Where $I = I \cup I $
	(0 1)
	$= \begin{pmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -2 & 5 \end{pmatrix}$
	(01)(-25)
	= 6-2 +0 -14 +
	0-2 0+5 -2 5
	. The identity matrix = 4
	-2 5
	b) Enjagements (-3) x/2) - 0/-6)
15	
	(-5/ (2) (-10)
	$\begin{pmatrix} -3 \\ -b \end{pmatrix} \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \% \begin{pmatrix} -12 \\ -10 \end{pmatrix}$
	(-b) x (2)= x (-10)
	$\begin{pmatrix} -3 \\ -5 \end{pmatrix} \times \begin{pmatrix} -2 \\ 6 \end{pmatrix} = \mathcal{B} \begin{pmatrix} 6 \\ -30 \end{pmatrix}$
	(-s/^(6) (-30)
	· vertices of the mangle = 0 (-6,-10)
	A (-12, -10)
	8 (6,-30)
	9: 5: 30


Extract 15.1 shows a solution of a candidate who incorrectly found the determinant, identity matrix and the image of the vertices of the enlarged triangle.

Despite the weak performance, there were 966 (0.3%) candidates who answered correctly this question. Those candidates were able to find the inverse and identity matrix, images of the triangle after enlarged and then translated and finally represented them in the same xy-plane. Extract 15.2 represents a sample answer from one of the candidates.

Extract 15.2

Acces	
15	a, A = 6 47
	[-2 5]
	1A = (6x5) - (4x-2)
	IA) = 30 - 8
	(A) = 30+8
	IAI = 38
	1 5 -47
	38 [2 6]
	or A
	.: The inverse (A-1) is 1 [5 -47]
	38 2 6
	and the state of t
	Identity matrix = A-1 x A
	38 2 6 -2 5
198	[⁵ / ₃₈ -4/ ₃₈] [6 4]
	[2/38 6/38] [-2 5]
	[20, +8, 20, +-20,]
	20, +8, 20, + -20, 38 38 38 38
	12/38+-12/38 8/38+30
	38 38
	38 0/38
	[6/38 38/38]
	0 1
	i. I dentity matrix of A = [1.0]
	TOOKING MACHIX Of A = [0]

15 0 (0,0), A(2,1), B(-1,3)
Enlargement E = [2 0]
[0 2]
Translation = [-35]
For: Ehlarged E = [2 2]
(0,0)=[20][0]=[0]
[0 2][0] [0]
$(2,1) = \begin{bmatrix} 2 & 07 & 2 \end{bmatrix} = \begin{bmatrix} 4+0 \\ 0+2 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix}$
0 2 [1] [0+2] [2]
$ \begin{array}{c c} (-1,3) & \begin{bmatrix} 2 & 0 & 7 & \begin{bmatrix} -1 & 7 & 2 & -2 & 7 \\ 0 & 2 & 1 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ \end{array} \end{array} $
Then translated · (0,0)
$\frac{\left(\begin{array}{c} X^{1} \\ Y^{\prime} \end{array}\right) = \left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} Q \\ S \end{array}\right)}{\left(\begin{array}{c} Y \\ S \end{array}\right)}$
(y') (y) (b)
$\begin{pmatrix} x' \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -3 \\ -5 \end{pmatrix}$
(y1) (o) (-b)
(x') = (-3)
y') (-5)
For; (24, 2)
(x1) = (4) + (-3) = (4-3)
(y') (2)(-5) (2-5)
$\langle X' \rangle = \langle 1 \rangle$
(y') (-3)
For: (-2, 6)
$(x^1) = (-2) + (-3) = (-2-3)$
$\int x^{1} = (-5)$
(y') (1)
:. The vertices of triangle will be at
0(-3,-5), A(1,-3) and B(-5,1)

Extract 15.2 shows how a candidate correctly answered Question 15.

2.16 Question 16: Functions and Probability

This question had three parts, (a), (b) and (c). In part (a), the candidates were required to draw a pictorial diagram for f(x) and find the domain and range of f(x), whereas the function was defined on the set of integers as:

$$f(x) = \begin{cases} 1+x & 1 \le x < 2\\ 2x-1 & 2 \le x < 4\\ 3x-10 & 4 \le x < 6 \end{cases}$$

In part (b), the candidates were required to find $f^{-1}(4)$ given that $f(x) = \frac{5x+7}{x+2}$. In part (c), they were given that, in a car yard there were 500 vehicles of which 160 were cars, 130 were vans and the remaining were

lorries. They were also given that every vehicle had an equal chance to leave

and were required to find the probability of; (i) a van leaving first, (ii) a lorry leaving first and (iii) a car leaving second if either a lorry or a van had left first.

This question was opted by 157,129 (49.5%) candidates. The candidates' performance in this question is presented in Figure 16.

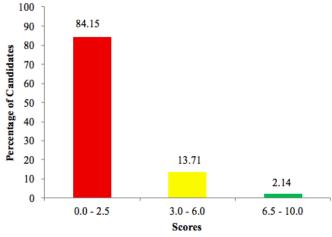


Figure 16: Candidates' Performance in Question 16.

Figure 16 shows that 15.85 percent of the candidates scored from 3 to 10 marks and therefore the question had a weak performance. The majority (84.15%) scored low marks and among them, 60.51 percent scored 0.

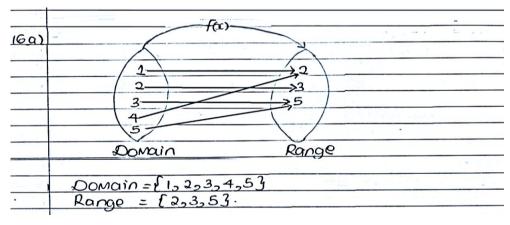
In part (a), majority of the candidates were unable to correctly draw the pictorial diagram. They could not identify the set of values of x that corresponds with the values of the function at the x – values (see Extract 16.1). Many candidates prepared incorrect table of values that led into incorrect pictorial diagrams and in turn incorrect domain and range. For example, some candidates wrote that the domain and the range were the sets of all real numbers. Others gave the domain and the range as the sets of all real numbers, such that $\{2 \le x \le 8\}$; $\{2 \le y \le 8\}$. These candidates generally lacked understanding on the concept of domain and range and also failed to comprehend the demand of question because the given function was defined on the set of integers $\{1 \le x \le 5\}$ and not on real numbers. The range for the function was supposed to be $\{y \in Z : y = 2, 3, 5\}$.

In part (b), majority of the candidates lacked the skills to find the inverse of the given function. Most candidates wrongly substituted x = 4 in

 $f(x) = \frac{5x+7}{x+2}$ and concluded that $f^{-1}(4) = \frac{5(4)+7}{4+2} = \frac{9}{2}$. These candidates were supposed to re-write the function as $x = \frac{5y+7}{y+2}$, then make y the subject of the equation to get $y = \frac{7-2x}{x-5}$ and finally write $f^{-1}(x) = \frac{7-2x}{x-5}$.

In part (c), most of the candidates faced problems in answering part (iii). They incorrectly wrote that the probability of a car leaving second if either a lorry or van had left as $\frac{160}{500} = \frac{8}{25}$. The candidates were unable to recognize that if either a lorry or a van had left first, the number of vehicles left in the yard would be 500-1=499 and thus the required probability was $\frac{160}{499}$.

Extract 16.1



<u></u> b)	+(+) = 5x+9
	('-1 (4) =
	4 = 5(4)+7
	1/4+2
	=4(4+2)=20+2
	= 16+2 = 27
	= 18 = 29
	- 00 19 - 0
	= 27 - 18 = 9 .'. $F^{-1}(C4) = 9$
	((4) 5 1
	2 0 2 0 2
رې	i) P(n): PCE)
	P(s)
	P(n) = 130
	500
	The order the ap a ran loomer out
	- the proposition of a can reading file
	is 13/50.
	i) P(E) = 160 (160+130-500)
	R(E) = 1 310
	(n) = RE)
	(2)9

Extract 16.1 shows that a candidate lacked skills to represent functions using pictorial diagrams, find inverses and solve probability problems.

On the other side, there were candidates who answered this question correctly. They managed to draw a correct pictorial diagram and find the domain and range of the given function. They were also able to find the inverse of the given function and solve the word problem related to probability (see Extract 16.2).

Extract 16.2

	f(x) = 5x + 7						
<u>b</u>)	$f(x) = \frac{5x+7}{x+2}$						
- 1	y = 5x + 7 $x + 2$						
	4.44						
-	$f^{-1} \rightarrow x = 5y + 7$						
	$f \rightarrow \infty = \frac{5y+4}{y+2}$						
	7						
-	$\alpha = Su + 7$						
-	$\frac{x = Sy + 7}{1}$						
	x(y+2) = xy + 7						
	$x_0 + 2x = 5u + 7$						
	2x - 7 = (5y - xy)y						
1	2x-7=(5-x)y						
	$xy + 2x = 5y + 7$ $2x - 7 = (5y - xy)y$ $2x - 7 = (5 - x)y$ $5 - x \qquad 5 - x$						
11 1							
<u> </u>	y = 2x - 1 $5 - x$						
	$f^{-}(4) = 2(4) - 7$ $5 - 4$						
	5 - 4						
	= 8-7						
	5-4						
-	= 1.						
	_ /.						
	$f^{-}(4) = 1$						
16	c) Solution:						
	Given:						
	Total number of vehicles (Sample spage) = 500 Number of cars = 160						
	Number of cars = 160						
	Number of vans = 130						
	Number of larno = ?						
	n(4) = 506						
	n(c) = 160						
	n(v) = 130						
	$n(L) = \frac{2}{2}$						
	. Thin; Nº q lorn's = 500 - (160+130)						
	= 500 - 290						
	= 210 ,						

i) Probability of a van to loan first.					
$n(\psi) = 500$					
$n(\nu) = 130.$					
P(E) = 130					
500					
= 0.26.					
The probability of van to lowe pirst is 0.26.					
ii) A lorry to lowe first.					
n(b) = 210					
Probability = 210 = 0.42					
500					
". Probab. "lily of lovey to leave find is 0.42.					
16 cris) 1/4 th. long or van will loave					
Then n(4) = 500-1					
= 499					
Then: Probability of car to loane = 160 - 0.32.					
499					
or lovey has left is 0.32.					
or lovey has left 18 0.32					

Extract 16.2 shows how the candidates correctly answered parts (a), (b) and (c).

3.0 CONCLUSION AND RECOMMENDATIONS

3.1 Conclusion

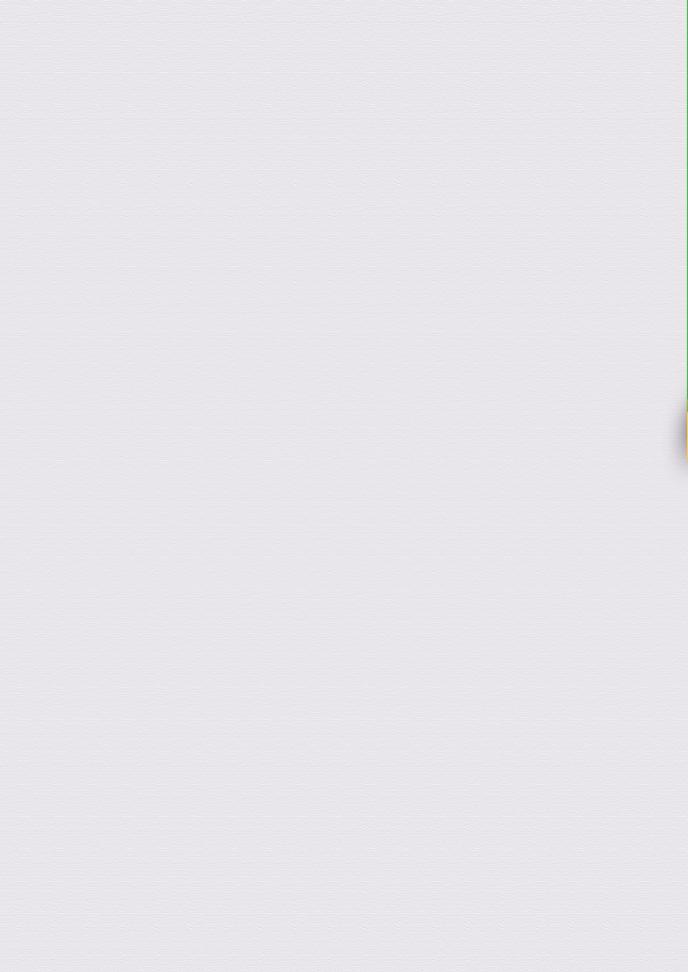
The analysis of the candidates' performance in each question has shown that out of the 16 questions that were tested, one question on *Accounts* had good performance and one question on *Statistics* had average performance. The remaining 14 questions had a weak performance. These questions were set from the topics of *Matrices and Transformations*, *Approximations*, *Radicals*, *Decimals*, *Rates and Variation*, *Algebra*, *Sets*, *Probability*, *Functions*, *Exponents*, *Logarithms*, *Vectors*, *Coordinate Geometry*, *Circles*, *Quadratic Equations*, *Linear Programming*, *Percentages*, *Trigonometry*, *Sequences and Series*, *Geometry and Similarity*.

The candidates weak performance on these topics was contributed by: inability to identify the requirements of the questions; inability to correctly perform mathematical operations; failure to formulate equations/inequalities from given information, inability to correctly represent given information in diagrams; lack of skills to draw graphs; failure to follow given instructions; inadequate knowledge and skills in using the laws, formulae; theorems and other mathematical concepts in answering the questions; and substituting incorrect data in these formulae.

3.2 Recommendations

In order to improve the candidates' performance in future Basic Mathematics examinations, it is recommended:

- (a) The students should put more emphasis on the topics which had a weak performance, namely Matrices and Transformations, Approximations, Radicals, Decimals, Rates and Variation, Algebra, Sets, Probability, Functions, Exponents, Logarithms, Vectors, Coordinate Geometry, Circles, Quadratic Equations, Linear Programming, Percentages, Trigonometry, Sequences and Series, Geometry and Similarity. The emphasis includes:
 - (i) Revising various concepts, theorems and mathematical properties by solving related problems;
 - (ii) Forming discussion groups and participating effectively in solving questions;
 - (iii) Participating fully in mathematics clubs in order to solve problems they face in different topics;
 - (iv) Making self-evaluation on different topics that have been taught and, where necessary, consulting their teachers for any concepts that need more clarification in order to master the topic.


(b) The teachers should;

(i) Teach all the topics in time and according to the syllabus to enable the students to get enough time for making revision on various topics;

- (ii) Use participatory methods in the teaching and learning processes;
- (iii) Allow students' timely consultations where necessary;
- (iv) Initiate and supervise the discussion groups and mathematics clubs so as to inculcate the spirit of students' cooperation in solving mathematical problems;
- (v) Provide exercises frequently; assess the students according to their abilities and device a mechanism of assisting them in improving their performance.
- (vi) Use simple teaching aids and daily life examples to enhance students understanding of various mathematical concepts.
- (c) The government should;
 - (i) Make sure that all secondary schools have enough and competent mathematics teachers:
 - (ii) Make follow-ups on teaching and learning processes in order to ensure that the topics are covered on time and according to syllabus;
 - (iii) Facilitate in-house training for teachers in order to update their knowledge and skills in the Mathematics subject.

ANALYSIS OF THE CANDIDATES' PERFORMANCE TOPIC-WISE CSEE 2017

S/N	Topic/Subtopic	Question Number	The Percentage of Candidates who Passed	Remarks
1	Accounts	14	73.93	Good
2	Statistics	12	56.76	Average
3	Matrices and Transformations	15	25.59	Weak
4	Approximations, Radicals and Decimals	1	23.16	Weak
5	Rates and Variations	6	22.75	Weak
6	Algebra and Sets	3	19.03	Weak
7	Probability and Functions	16	15.85	Weak
8	Exponents and Logarithms	2	15.27	Weak
9	Vectors and Coordinate Geometry	4	14.59	Weak
10	Circles	13	8.31	Weak
11	Quadratic Equations	10	7.77	Weak
12	Linear Programming	11	7.02	Weak
13	Percentages	7	5.07	Weak
14	Trigonometry	9	3.41	Weak
15	Sequences and Series	8	2.70	Weak
16	Geometry and Similarity	5	2.48	Weak

