

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2022

ADVANCED MATHEMATICS

THE UNITED REPUBLIC OF TANZANIA MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

CANDIDATES' ITEM RESPONSE ANALYSIS REPORT ON THE ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION (ACSEE) 2022

142 ADVANCED MATHEMATICS

Published by The National Examinations Council of Tanzania, P. O. Box 2624, Dar es Salaam, Tanzania.

© The National Examinations Council of Tanzania, 2022

All rights reserved.

TABLE OF CONTENTS

FOREWOR	۲D	iv
1.0 INT	RODUCTION	1
2.0 ANA	LYSIS OF CANDIDATES' PERFORMANCE IN EACH Q	UESTION
		2
2.1 14	2/1 ADVANCED MATHEMATICS 1	
2.1.1	Question 1: Calculating Device	
2.1.2	Question 2: Hyperbolic Functions	5
2.1.3	Question 3: Linear Programming	11
2.1.4	Question 4: Statistics	17
2.1.5	Question 5: Sets	
2.1.6	Question 6: Functions	
2.1.7	Question 7: Numerical Methods	
2.1.8	Question 8: Coordinate Geometry I	
2.1.9	Question 9: Integration	
2.1.10	Question 10: Differentiation	53
2.2 14	2/2 ADVANCED MATHEMATICS 2	60
2.2.1	Question 1: Probability	60
2.2.2	Question 2: Logic	67
2.2.3	Question 3: Vectors	71
2.2.4	Question 4: Complex Numbers	79
2.2.5	Question 5: Trigonometry	
2.2.6	Question 6: Algebra	
2.2.7	Question 7: Differential Equations	105
2.2.8	Question 8: Coordinate Geometry II	
3.0 ANA	LYSIS OF CANDIDATES' PERFORMANCE IN EACH T	OPIC . 119
4.0 CON	ICLUSION AND RECOMMENDATIONS	
4.1 Co	onclusion	
4.2 Re	commendations	
Appendix I		
Appendix I	[

FOREWORD

This report on the Candidates' Item Response Analysis (CIRA) in Advanced Mathematics for the Advanced Certificate of Secondary Education Examination (ACSEE) 2022 was prepared and issued by the National Examinations Council of Tanzania. The report is based on the performance of candidates with the aim of providing feedback about the candidates' competence in the Advanced Mathematics subject to students, teachers, parents, education administrators, school managers, policy makers and the general public.

The analysis of the candidates' responses was done in order to determine the candidates' strengths and weaknesses in application of what they had learned. The analysis shows what the secondary education system was able to provide for students during their two years of Advanced Level of secondary education.

The ACSEE 2022 Advanced Mathematics was well performed; 13,105 (97.89%) out of 13,449 candidates passed the examination. The good performance was observed in 14 out of 18 topics which were examined. The candidates performed well on the topics of Logic, Coordinate Geometry II, Trigonometry, Sets, Linear Programming, Statistics, Algebra, Calculating Devices, Vectors, Hyperbolic Functions, Numerical Methods, Differential Equations, Complex Numbers and Functions.

The candidates had average performance on the topics of Probability, Coordinate geometry I and Differentiation and they demonstrated poor performance on the topic of Integration. The candidates' inability to use the method of integration by parts to integrate the product of algebraic and exponential functions and the use of partial fractions to evaluate the definite integral both contributed to their poor performance.

The National Examinations Council of Tanzania believes that the feedback provided in this report will help stakeholders in deciding on the most appropriate strategies of improving the future performance on this subject.

The Council would like to express its gratitude to all individuals, including examination officers who wrote this report.

-

Athumani S. Amasi **EXECUTIVE SECRETARY**

1.0 INTRODUCTION

This report is meant to informs all education stakeholders on candidates' items responses in Advanced Mathematics subject in the Advanced Certificate of Secondary Education Examination (ACSEE) 2022.

Specifically, the report analyses the candidates' responses in all the topics examined in the Advanced Mathematics syllabus. The Advanced Mathematics examination had two papers: paper 1 and paper 2. In paper 1, there were ten (10) compulsory questions where each question carried ten (10) marks. Paper 2 consisted of sections A and B. Where section A comprised four (4) compulsory questions, where each question carried fifteen (15) marks. Section B comprised four (4) optional questions from which the candidates were required to answer any two questions and each carried twenty (20) marks.

The analysis of the candidates' responses involved short explanations on the requirement of each question and its performance is presented in section 2.0. Figures and charts have been used to summarize the performance. Factors that contributed to good, average and weak performance in each question have been illustrated using samples of candidates' responses which are inserted as extracts.

The analysis of candidates' responses in each topic has been done to identify topics with good, average and weak performance. Three colours have been used to indicate performance whereby green colour stands for good performance, yellow colour for average and red colour for weak performance. The percentage boundaries 0 - 34, 35 - 59 and 60 - 100 are used to represent weak, average and good performance respectively.

In 2022, a total of 13,449 candidates sat for the Advanced Mathematics Examination, out of whom 13,105(97.89%) candidates passed. However, the results of 61 candidates were withheld due to administrative reasons. In comparison, the performance in 2022 was better than that of 2021 where 12,706 (93.49%) candidates passed. This represents an increase of 4.4 per cent of the candidates' performance. The percentages of candidates' performance in Advanced Mathematics examination in two consecutive years are presented in Figure 1.

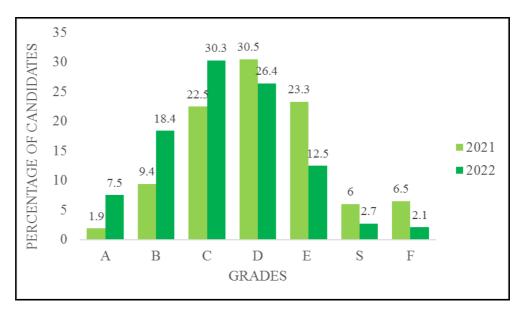


Figure 1: Overall Performance in the 2021 and 2022 Advanced Mathematics Examinations

In Figure 1, the trend shows a rise of the quality of performance in 2022 as compared to 2021. For example, the number of candidates who scored grade F decreased by 4.4% in 2022, while grade C increased by 7.8% and grade B increased by 9%. On the other hand, the number of candidates who scored grade A in 2022 increased by 5.6%.

The analysis of candidates' responses per topic is presented in Section 3.0; where factors that contributed to good, average and weak performance across the topics are highlighted. Finally, the conclusion and recommendations for improvement of performance in the future are provided in Section 4.0 of this report.

2.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH QUESTION

This section presents the analysis of candidates' performance in each question. The National Examination results were based on the score intervals of 80 - 100, 70 - 79, 60 - 69, 50 - 59, 40 - 49, 35 - 39 and 0 - 34 which are defined as excellent, very good, good, average, satisfactory, subsidiary and fail respectively. For the purpose of this report, the performance in each question is described into three categories; good, average or weak under the percentage boundaries of 60 - 100, 35 - 59 and 0 - 34 respectively.

2.1 142/1 ADVANCED MATHEMATICS 1

2.1.1 Question 1: Calculating Device

The question had three parts (a), (b) and (c) which required the candidates to:

(a) Use a non-programmable calculator to find the value of the expression $\sqrt{\pi^{\cos 60^0}}$ $(e^{2.15} + \tan^{-1}(\ln 0.25))$

$$\frac{\sqrt{\pi}}{3.14} \times \frac{(e^{-r_{\rm turn}} (110.25))}{\sqrt{\pi l^{n\pi}}}$$
 correct to 3 decimal places.

(b) Use a non-programmable calculator to find the value of $T = \sqrt{\frac{2hp}{g(p-mg)^{\frac{1}{3}}}}$ correctly

to nine significant figures given that h=3, p=500, g=10 and m=0.25.

(c) Use statistical functions of a non-programmable calculator and the following frequency distribution table; to find the mean, variance and standard deviation correctly to three decimal places.

Values	250	230	210	190	170	150	130	110	90	70	50	30
Frequency	4	11	5	6	21	40	26	4	8	35	28	12

The analysis of data shows that 13,449 candidates (100%) attempted this question. Among them, 2,716 (20.2%) candidates scored from 0 to 3 marks, while 2,171(16.1%) candidates scored from 3.5 to 5.5 marks and 8,562 (63.7%) candidates scored from 6 to 10 marks. Figure 2 shows the percentage of candidates' performance.

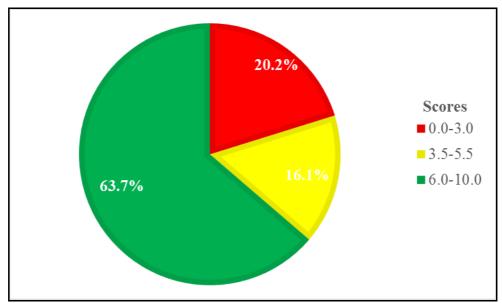
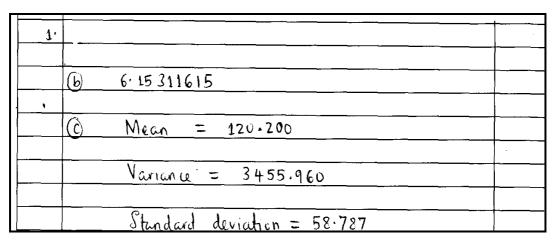



Figure 2: Candidates' Performance in Question 1

From Figure 2, it is observed that the candidates' performance in this question was good.

The analysis shows that most candidates had good performance in this question. Thus, the candidates who answered the question correctly were able to use the functional keys of a non-programmable calculator to calculate the required values. For example, candidates were able to get the correct values that are Mean=120.200, Variance = 3455.960 and Standard deviation=58.787 in three decimal places after plugging the given data into the calculator. Extract 1.1 shows a response from one of the candidates who performed well the question.

Extract 1.1: A sample of parts of correct responses to question 1

Extract 1.1 shows that the candidate responded correctly to the question by using the functional keys of a non-programmable calculator to compute the value of T, mean, variance and standard deviation.

Even though most of the candidates showed an outstanding performance in this question, some of them failed to get the correct solution. For example, in part (b), some of them were able to substitute values of h=3, p=500, g=10 and m=0.25 into the given equation of T and finally got T=6.15. Those candidates did not realise that T was supposed to be written in nine significant figures, that is, T=6.15311615. Others tried to rewrite $T^2 = \frac{2hp}{g(p-mg)^{\frac{1}{3}}}$ and by setting h, p, g and m, hence got

 $T^2 = 37.86083836$, concluding that this was the value of *T*. Those candidates did not realize that *T* could be found by taking the square root of 37.86083836, so that *T*=6.15311615.

Also in part (c), it was observed that most of the candidates were able to utilize the correct statistical functions of a non-programmable calculator to find the mean, variance, and standard deviation. But some of them failed to approximate the answers to three decimal places as per instructions. For instance, they got mean of 120.2 instead of 120.200, variance of 345.96 instead of 3455.960 and standard deviation of 58.9356 instead of 58.787. Extract 1.2 is a sample of a candidate who had inadequate competence on what was tested in this question.

<u>1</u> a/	
b/	T: 2(3)(500)
	$\sqrt{10(500-0.25(10))^{1/3}}$
	= 1.34500752
C/	Mean: 120-2
	Nariance : 58-787
	Clandoid deviation = 58-935

Extract 1.2: A sample of incorrect responses to question 1

In Extract 1.2, the candidate failed to find the correct value of T in part (b) and in part (c), the candidate failed to write the mean into three decimal places while completely got incorrect answers for the variance and standard deviation by using statistical functions of a non-programmable calculator.

2.1.2 Question 2: Hyperbolic Functions

This question comprised three parts (a), (b) and (c). Part (a), required the candidates to obtain the value of x in logarithmic form if $2\cosh 2x + 10\sinh 2x = 5$. While in part (b), the candidates were required to show that $\tanh \theta = -\cos 2\phi$ given that $\theta = \ln (\tan \phi)$ and in part (c), they were supposed to evaluate the integral $\int_{0}^{1} x \sin 2x dx$ by using the integration by parts technique correctly to 7 decimal places.

The data analysis shows that 13,449 candidates (100%) attempted this question. Out of whom 3,919 (29.1%) candidates scored 0 to 3 marks, while 3,067(22.8%) candidates scored 3.5 to 5.5 marks and 6,463(48.1%) candidates scored 6 to 10 marks. The percentage of candidates' performance is shown Figure 3.

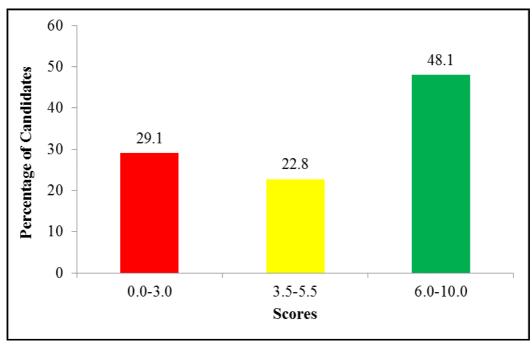


Figure 3: Candidates' Performance in Question 2

Figure 3 shows that 70.9 per cent of the candidates scored 3.5 to 10 marks; indicating good performance in this question.

The candidates who performed well in this question, demonstrated a good understanding of the concepts tested. In part (a), those candidates defined correctly $\cosh 2x = \left(\frac{1}{2}\left(e^{2x} + e^{-2x}\right)\right)$ and $\sinh 2x = \left(\frac{1}{2}\left(e^{2x} - e^{-2x}\right)\right)$, then they inserted in the equation $2\cosh 2x + 10\sinh 2x = 5$ and after solving they obtained $x = \frac{1}{2}\ln\left(\frac{4}{3}\right)$.

In part (b), the candidates applied the hyperbolic tangent on both sides of the equation $\theta = \ln(\tan \varphi)$, to obtain $\tanh \theta = \tanh \ln \tan \varphi$ and defined $\tanh(\ln \tan \varphi)$ as

 $=\frac{e^{\ln \tan \phi} - e^{-\ln \tan \phi}}{e^{\ln \tan \phi} + e^{-\ln \tan \phi}} \quad \text{to get } \tan \theta = \frac{\tan \phi - (\tan \phi)^{-1}}{\tan \phi + (\tan \phi)^{-1}}, \quad \text{which equals to}$ $\frac{\tan^2 \varphi - 1}{\tan^2 \varphi + 1} = \frac{\tan^2 \varphi - 1}{\sec^2 \varphi}. \text{ They simplified this equation further and managed to show that}$ $\tanh \theta = -\cos 2\varphi.$

Candidates who answered part (c) correctly, used the concept of integration by parts. From the formula $\int u dv = uv - \int v du$, the candidates were able to let u = x and $dv = \sin 2x dx$. Then, they differentiated u with respect to x that is $\frac{du}{dx} = 1$, hence they obtained du = dx and integrated dv to get $v = -\frac{1}{2}\cos 2x$. Finally, the candidates substituted in the formula above as $\int_{0}^{1} x \sin 2x dx = \left[-\frac{1}{2}x \cos 2x + \frac{1}{4}\sin 2x\right]_{0}^{1}$ to get 0.4353978 as it was required. Extract 2.1 is a sample solution of the correct response from one of the candidates.

	1	
02.	(6)	2 losh 2 x + 10 Sinh 2 x - 5 = 0 .
∽∠,		$\frac{2 (csh 2x + 10 sinh 2x - 5 = 0)}{2 (e^{2x} + e^{-2x}) + 10 (e^{2x} - e^{-2x}) - 5 = 0}$
, ,		$e^{\varphi x} + 1 + 5(e^{\varphi x} - 1) - 5e^{2x} = 0$
		$e^{4x} + 1 + 5e^{4x} - 5 - 5e^{2x} = 0$
		$6e^{4x} - 5e^{2x} - 4 = 0$
		$\frac{e^{\varphi_{X}} + 1 + 5(e^{\varphi_{X}} - 1) - 5e^{2\chi} = 0}{e^{\varphi_{X}} + 1 + 5e^{\varphi_{X}} - 5 - 5e^{2\chi} = 0}$ $\frac{e^{\varphi_{X}} + 1 + 5e^{\varphi_{X}} - 5 - 5e^{2\chi} = 0}{6e^{\varphi_{X}} - 5e^{2\chi} - 4 = 0}$ $\frac{6(e^{\chi_{X}})^{2} - 5(e^{\chi_{X}})^{2} - 4 = 0}{6(e^{\chi_{X}})^{2} - 5(e^{\chi_{X}})^{2} - 4 = 0}$
		solving quadrafizally by general formula.
		$e^{2x} = 5 \pm 525 \pm 96$
		12
		$e^{2X} = 5 \pm 121$
		12.
		12 $e^{2x} = 5 \pm 11$
		12
		$\frac{12}{e^{2x} = 16}, e^{2x} = -6.$
		12 12
		$2 \times 2 \ln 4$, $2 \times - \ln (-1)$
		3 not valid ever us logarithm
		$\frac{2 \times 2 \ln 4}{3}, \frac{2 \times 2 \ln (-\frac{1}{2})}{3}$ $\frac{1}{2 \times 2 \ln (\frac{2}{3})}$ $\frac{2 \times 2 \ln (\frac{2}{3})}{3}$ $\frac{1}{2 \times 2 \ln (\frac{2}{3})}$ $\frac{1}{2 \times 2 \ln (\frac{2}{3})}$ $\frac{1}{2 \times 2 \times 2 \ln (\frac{2}{3})}$ $\frac{1}{2 \times 2 \times$
	16	$D = \ln(\tan \phi)$.
		$2\theta = \ln(\tan^2 \phi)$
		$ \begin{array}{rcl} \vartheta &=& \ln\left(\tan\varphi\right) & . \\ 2\vartheta &=& \ln\left(\tan^2\varphi\right) \\ \varrho^{2\vartheta} &=& \tan^2\varphi & & - & (1) \end{array} $
		but tanh 0 = sinh 0 = e ⁰ -e ⁻¹ , 2
		but $\tanh \theta = \sinh \theta = \frac{e^{\theta} - e^{-\theta}}{\cosh \theta} \cdot \frac{2}{2} = \frac{e^{\theta} + e^{-\theta}}{e^{\theta} + e^{-\theta}}$
		$\frac{e^{2} + e^{-\theta}}{e^{2\theta} + 1}$
		$taule \theta = \rho^{2\Theta} - 1$
	-	$e^{2\delta} + 1$
	1	but how equ(1) 0 20 = tan? .

$$\frac{1}{2} \left(b - \frac{1}{4} b = \frac{1}{4} b + 1 - \frac{1}{2} b + 1 - \frac{1}{4} b + 1 - \frac{1}{2} b + \frac$$

Extract 2.1: A sample of correct responses to question 2

In Extract 2.1, the candidate was able to solve the value of x in logarithmic form by using the correct definition in part (a). In part (b), the candidate managed to use the definition of hyperbolic tangent to show that $tanh\theta = -\cos 2\phi$. While in part (c), the candidate correctly used the concept of integration by parts to evaluate the given definite integral.

Despite the good performance in this question, some of the candidates were not able to perform well this question. In part (a), several candidates defined incorrectly the $e^x + e^{-x}$

hyperbolic identities. For example, one of the candidates wrote $\sinh x = \frac{e^x + e^{-x}}{2}$, then

substituted it in $2\cosh 2x + 10\sinh 2x = 5$ and got $2\left(\frac{e^{2x} + e^{-2x}}{2}\right) + 10\left(\frac{e^x + e^{-x}}{2}\right) = 5$. The equation was simplified to $e^x(e^{2x} + 5e^x - 4) = 5$. Furthermore, the equation was solved by equating $e^x = 5$ to get $x = \ln 5$ and $x^{2x} + 5e^x - 4 = 0$ to get $x = \ln\left(\frac{-5 \pm \sqrt{41}}{2}\right)$. This was completely wrong because in quadratic equations the product of two factors is equal to zero.

In part (b), some candidates who got incorrect answers defined $\tanh \theta$ using wrong identities as $\tanh \theta = \frac{e^{\theta} - e^{-\theta}}{2}$ and introduced in the equation $\tanh \theta = -\cos 2\theta$ that is, $\frac{e^{\theta} - e^{-\theta}}{2} = -\cos 2\phi$. Then solved it to obtain $\theta = \ln(\tanh \phi \pm \sqrt{\tanh^2 \phi + 1})$. Thereafter, they recalled that $\theta = \ln(\tanh \phi)$ which led them to get $\tan \phi = \tanh \phi \mp \sqrt{\tanh^2 + 1}$. Others defined $\tanh \theta = \frac{e^{2\theta} - 1}{e^{2\theta} + 1}$, and then equated $\tanh \theta$ to some variables. For instance $y = \frac{e^{2\theta} - 1}{e^{2\theta} + 1}$, then simplified it in terms of y as $e^{2\theta} = \frac{y + 1}{y - 1}$, indicating that $\theta = \frac{1}{2} \ln \left(\frac{y + 1}{y - 1} \right)$. From this step, they recalled $\theta = \ln(\tan \phi)$ and y as $\tanh \theta$ so that $\ln \tan \phi = \frac{1}{2} \ln \left(\frac{\tanh \theta + 1}{\tanh \theta - 1} \right)$. Finally they arranged and simplified it to $\tanh^2 \phi - \tan^2 \phi \tanh^2 \theta = 1 + \tanh^2 \theta + 2 \tanh \theta$. This was also incorrect because it was required to show that $\tanh \theta = -\cos 2\phi$.

In part (c), some candidates separated the integral $\int x \sin 2x dx$ into the form $\int x dx + \int \sin 2x dx$. After working with these separate integrals obtained 2.416146 instead of 0.235 which was required. Those candidates had inadequate knowledge and skills on how to use the formula of integration by parts, $\int u dv = uv - \int v du$ to integrate $\int x \sin 2x dx$. Also, in some cases, a few candidates converted $\sin 2x$ into $\sinh 2x$ then stated that $\int x \sin 2x dx = \int x \sinh 2x dx$. Thereafter, they used the integration by parts technique to obtain 0.9743827 as an equivalent answer to integral $\int x \sin 2x dx$. This was contrary to the requirement of the question because it was not directed to change $\sin 2x$ to $\sinh 2x$. Not only that, but also some candidates expressed $\int x \sin 2x dx$ as $\int 2x \sin x \cos x dx$ then they tried to work out by substitution. However, it was difficult to conquer the integral because some variables remained after simplification that is. they considered $u = \sin x, du = \cos x dx$ and $\int 2x \sin x \cos x dx = 2 \int \sin x u dx$. Extract 2.2 is a sample of a response by a candidate who failed to demonstrate the intended skills in some parts of the question.

٤.	(x cin 2x dx	
	from alom's rule: sinx = sinh x.	
	sinhax = sinax.	
	$\int_0^1 x \sin ax dx = \int_0^1 x \sinh ax dx .$	
	J's Xiinh 2x dx.	
)	let u=x·	
	du≈dx.	
	v=lsintaxdx	
	$V = \frac{1}{2} (ab) x$	
	Rocall, Judy = uv-Jvdu.	
	ludv = žunhax - Jžunhax dx.	
	$\int u dv = \frac{3}{2} \cosh 2x - \frac{1}{2} \int (u h) x dx.$	
	$\int u dv = \frac{x}{2} cuh a x - \frac{1}{2} \left(\frac{1}{2} t i u h a x \right).$	
	Judy = X what - Kysinhax.	
	[0 xint 2x dx = [x inh 2x - ky int 2x].	
	= 0.9743827 -0.	
	= 0.97 43 827]
	: Shut $\int_0^1 x \sin 2x dx = 0.9743827$.	

Extract 2.2: A sample of incorrect responses to question 2(c)

In Extract 2.2, part (c) of the question, the candidate incorrectly converted $\sin 2x$ into $\sinh 2x$ then evaluated the given definite integral by using the concept of integration by parts.

2.1.3 Question 3: Linear Programming

This question consisted of two parts, (a) and (b). In part (a), the question stated, "Mr. Safari wants 10, 12 and 12 units of chemicals A, B and C respectively for his garden. A liquid product contains 5 units of A, 2 units of B and 1 unit of C per jar and each jar is sold at 3,000/=. On the other hand, a dry product contains 1 unit of A, 2 units of B and 4 units of C per carton and each carton is sold at 2,000/=. If x and y are the numbers of jars of liquid products and cartons of dry products respectively, formulate a linear programming problem to minimize the cost."

In part (b), the question read "A cement dealer has two depots D1 and D2 holding 180 tons and 250 tons of cement respectively. The customers C1 and C2 have ordered 200

and 150 tons respectively. The transport cost per ton from each depot to each customer are as shown in the following table:"

	Customer							
From	C ₁	C ₂						
Depot D ₁	1,000/=	1,500/=						
Depot D ₂	2,000/=	1,800/=						

Candidates were required to:

- i. Find the number of tons of cement which should be delivered to each customer in order to minimize the transport cost?
- ii. Find the number of tons of cement that will remain at D_2 after meeting the orders.

The analysis shows that, 66.0 per cent of the candidates who attempted the question scored from 6 to 10 marks, 21.8 per cent scored from 3.5 to 5.5 marks and 12.2 per cent scored from 0 to 3 marks. Generally, the candidates' performance in this question was good as 87.8 per cent of the candidates got not less than 3.5 marks. Figure 4 illustrates the candidates' performance in this question.

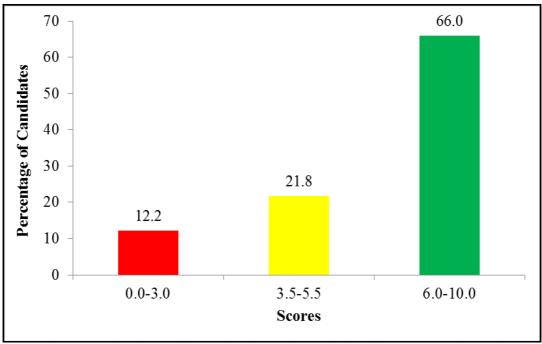


Figure 4: Candidates' Performance in Question 3

The analysis of candidates' responses shows that; the majority of the candidates who performed well the question were able to formulate the linear programming model correctly. That is, they first formulated the objective function as: Minimize: f(x, y) = 3000x + 2000y which is subjected to: $5x + y \ge 10$, $2x + 2y \ge 12$, $x + 4y \ge 12$ and $x, y \ge 0$ as constraints.

Also in part (b) (i), the candidates were able to formulate a mathematical model from the transportation problem as minimize f(x, y) = 670,000 - 1000x - 300y subject to $x + y \le 180, x + y \ge 100, x \le 200, y \le 150$ and $x, y \ge 0$. Then represented the formulated constraints on the xy-plane, hence got (0,100), (0,150), (30,150), (180,0) and (100,0) as the corner points. Thereafter, using the corner points the candidates obtained 180 tons of cement delivered from D₁ to C₁, no cement from D₁ to C₂, 20 tons from D₂ to C₁ and 150 tons of cement from D₂ to C₂. Finally, in part (b) (ii), the candidates were able to get 80 number of tons which remain at D₂ after meeting the orders. Extract 3.1 shows a response from a candidate who answered this question correctly.

03. (e)	
	The number of jars of liquid products be X
	The number of jars of liquid products be X. The number of cartons of day products be y.
	Objective function
	Objective function f(x, y) = 3000x + 2000y ³ /t minimize
	Constraints
	$5x + y \ge 10$ ···· (1)
	2x +247 12
	$X + Y \ge 6 (H)$
	X + 49 > 12
	Non-negativity constraints
	X%0, Y%0
l ì	

<i>.</i>										
<u> </u>										
	X 200-X									
	D ₁ D ₂									
	y so									
	C2 150 5									
	Decision Variables									
	Denote number of tons of cement from Di to Ci as X									
	Denote number of tars of cement from Di to C2 as y.									
	Objective function									
	f(x,y) = 1000x + 1500y + 2000(200-x) + 1800(150-y)									
	$f(x,y) = 1000 \times -2000 \times +1500 - 1800 + 400000 + 270000$									
	f(x,y) = 670000 - 1000x - 300 y - 54 minimize									
	Conspaints									
	X 4 200 , Y 4 150									
	X+Y≥100, X+Y≤180									
	Non-negative constraints									
	X70, Y70									
	Equations									
	X+y=100 X+y=180									
	x 1/1 x 1/1									
	0 100 0 180									
	100 0 180 0									
	Corner points A(0,100) B(0,150) c(30,150) D(180,0) E(100,1									

03 6			• • • • •						1				· · · · ·	:	
		GR	APH	eF	41	EAR	pp.	DG-P2 A	MM	NG	PRDE	LEM	it edg		
		Ŋ	ax15									x	= 200		
		ang													
		246													
		- 													-
		2001													
		1833													
															=150
		140	(0,150)	CL3	97 15 0)									<u> </u>	-130
		120													
		104214		******	Feas	610	XX								
		- 8 8		\mathbf{X}	Yeg	ìchn									
						X									
								E (164			O (I S	(a, a)		X	-4×13
			2	54	0	€ ₹	•		1	40 14	-18	<u>م</u> ر م	90 2 \	20	
					+		r I I I F						\rightarrow		
										- X .	1=100	<u></u>	<u> </u>	K+y=	180
														:	
				代出日											
03 сь			T					- 1000					Value		
e	A(0,1 B(0)		fr	0,150) = E	7000	0-100	00(0) 00(0)	- 30	0(15	<u>)</u>		,400		
L s	c (30, D (180							00 (30					950		
	E(100,0) f(100,0) = 670000 - 1000(100) - 300(0) 570000														
	Optimal solution is O(180,0).														
		norde													
		cement should be delivered to customer C1 from D1, 20 tons of cement should be delivered to C1 from D2 and 150 tons of cement should be delivered to C2 from D2.													
	t	50 to	~>	of c	emen	t sl	noulo	l be	deli	Verec	\$ 10	C2	from	Dz	•
	(ii)	80	tonie	. "P	10.	ne.t		11			D ₂			- 1	
	<u> </u>		1000	<u> </u>		· HEMA	121	11 12	marv	al	- V2	-		-	

Extract 3.1: A sample of correct responses to question 3

In Extract 3.1, the candidate was able to formulate a mathematical model from the given word problem in part (a). In part (b) (i), the candidate managed to find the number of tons from the depots D_1 and D_2 to customers C_1 and C_2 and in (b) (ii), the candidate was able to find the number of tons which remained at depot D_2 after meeting the orders.

Despite the fact that most of the candidates attempted well this question, the analysis of the responses revealed that, a few of them faced some challenges. For instance in part (a), those candidates used incorrect inequalities such as \leq instead of \geq as per requirement of the question. For example, some wrote $5x + y \leq 10$, $2x + 2y \leq 12$ and $x + 4y \leq 12$. Also, they wrote the objective function as (x, y) = 3000x + 2000y instead of *Minimize*: f(x, y) = 3000x + 2000y. Others went beyond by taking the summation of all the given data to get the objective function i.e. f(x, y) = 8x + 7y + 5000 instead of f(x, y) = 3000x + 2000y. In other circumstances, some candidates established the constraints in the form $5x + 2y + z \geq 3000$, $x + 2y + 4z \geq 2000$. Then they wrote $x \geq 10$, $y \leq 12$ and $z \leq 12$. Thereafter, they renewed the first two inequalities to $5x + 2y \geq 2800$ and $x + 2y \geq 1952$. Finally, they stated the objective function as f(x, y) = x + y + 12. This approach was also wrong because it is contrary to the requirement of the question.

In part (b), a few candidates faced a problem on formulating the linear inequalities. For example the constraints $x + y \le 200$, $x + y \ge 280$, $x \le 180$, $y \le 250$, $x \le 0$, $y \le 0$ were observed and such candidates ended up with f(x, y) = -500x + 200y + 720,000 as the objective function. This kind of mathematical model led them to get the wrong number of tons of cement transported from depots D_1 and D_2 to customers C_1 and C_2 . Generally, those candidates had insufficient knowledge and skills on how to formulate mathematical models to solve linear programming problems. Extract 3.2 is a sample of candidate's responses with an incorrect solution to part (a) of this question.

3@ let
to represent chemican's for 21 required
x to represent Chemicals for A required y-to represent Chemicals for B required to represent Chemicals for C required
Z to regresslut clienticals for C required
B = 12
C = 12
nequanties
5x+2y+773,000
2 + 24 + 17 7 2 000
I number of lars of large da
y number of jars and cartons alo y number of jars of higherids and cartons
$5\chi + 2\gamma + Z > 3,000$
x+2y+4Z7 2,000
$\chi_{\gamma 0} \qquad y_{\gamma 0}$
From
$\chi \neq 10$
y = 12
$Z \leq 12$
There fore
5x +2y + 12 7 3000
5x + 2y > 2,988 (1)
$\chi + 2y + 4(12) > 2000$
$\frac{\chi + 2y > 1952 (i)}{0 \text{ bjective function}}$ $\frac{f(\chi, y) = \chi + y + 12}{12}$
la purgion

Extract 3.2: A sample of incorrect responses to question 3(a)

In Extract 3.2, the candidate failed to formulate the correct mathematical model to minimize the cost from the given problem.

2.1.4 Question 4: Statistics

The question read "The masses of a sample of new potatoes were measured to the nearest gram and are summarized in the following table:

Mass (g)	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	80 - 89	90 - 99
Frequency	2	14	21	73	42	13	9	4	2

Candidates were required to determine the following measures of dispersion correct to three decimal places:

- (a) first and third quartiles.
- (b) semi-inter quartile range.

- (c) seventh decile.
- (d) 80^{th} percentile.
- (e) variance and standard deviation."

Analysis shows that 13,449(100%) candidates attempted the question. Among them, 2,389(17.7%) candidates scored from 0 to 3 marks, 2,847(21.2%) candidates scored from 3.5 to 5.5 marks and 8,216(61.1%) candidates scored from 6 to 10 marks. Figure 5 illustrate the performance of the candidates.

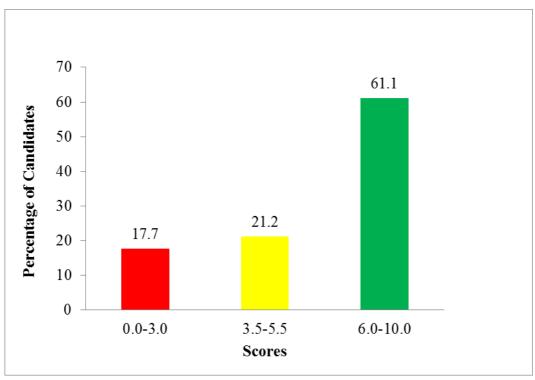


Figure 5: Candidates' Performance in Question 4

The performance of candidates to this question was good since a larger number of candidates (82.3%) who attempted the question scored more than 3 marks.

The candidates who performed well in part (a) of this question were able to calculate

the lower quartile by using the formula $Q_1 = L + \frac{\left(\frac{N}{4} - f_b\right)}{n_w} \times C$, with L = 39.5, N = 180, fb = 37, $n_w = 73$ and c = 10. Hence, they got $Q_1 = 40.596$. On the other hand, the third quartile was successfully calculated by using the formula

 $Q_3 = L + \frac{\left(\frac{3N}{4} - f_b\right)}{n_w} \times C$, then inserted L = 49.5, N = 180, fb = 110, $n_w = 42$ and c = 10, finally they got $Q_3 = 55.452$ grams. In part (b), the candidates used the formula $S.I.R = \frac{Q_3 - Q_1}{2}$ and substituted $Q_1 = 40.596$ and $Q_3 = 55.452$ to get 7.428 grams as semi-interquartile range.

Similarly in part (c), the candidates used the formula $D_7 = L + \frac{\left(\frac{7N}{10} - f_b\right)}{n_w} \times C$ to get the seventh decile, while using L = 49.5, N = 180, fb = 110, $n_w = 42$ and c = 10 obtained $D_7 = 53.310$ grams as it was required. Not only that, but also in part (d), the candidates

used the formula $P_{80} = L + \frac{\left(\frac{80N}{100} - f_b\right)}{n_w} \times C$ to find the 80th percentile and then inserted L = 49.5, N = 180, fb = 110, $n_w = 42$ and c = 10 to obtain $P_{80^{th}} = 57.595$ grams.

Lastly in part (e), the candidates managed to construct a comprehensive frequency distribution table which was a necessary step in solving the question. From the frequency distribution table they obtained $\sum f = 180$, $\sum f u = 66$ and $\sum f u^2 = 384$. Then, they applied the formula $Variance(var(x)) = c^2 \left(\frac{\sum f u^2}{\sum f} - \left(\frac{\sum f u}{\sum f}\right)^2\right)$ that is

Variance = $10^2 \left(\frac{384}{180} - \left(\frac{66}{180}\right)^2\right)$ to obtain 199.889 as a variance. Lastly, they calculated

the standard deviation and got 14.138 by taking the square root of variance. Candidates were keen to write the answers in three decimal places. Extract 4.1, is a sample of a correct response from a candidate who demonstrated a good understanding on the question.

4.	(a)		l f	c.f		ч	fu	u²	fuz					
Ţ.	<u> </u>	Mau (y)			X 14+5			9		 				
	· · · · · · · · ·	10 - 19	2	2	24.5				18	<u> </u>				
		20 - 29 30 - 39	14	16	· · · · · · · · · · · · · · · · · · ·			4	56					
	<u>30 - 39</u> <u>21</u> <u>37</u> <u>34.5</u> <u>-1</u> <u>-21</u> <u>1</u> <u>21</u> <u>40 - 49</u> <u>73</u> <u>110</u> <u>44.5</u> <u>0</u> <u>0</u> <u>0</u>													
	50 - 59 42 152 54.5 1 42 1 42 60 - 69 13 165 64.5 2 26 4 52													
	70 - 79 9 174 74.5 3 27 9 81													
		80 - 89	4	178	84.5	4	18	16	64					
		90 - 99	2	180	94-5	5	10	25						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
		$Q_1 = L +$	(1/4 .	- Σfh)	C									
			(fm										
		N/4 =	180 =	45	L =	- 34	.5	i =	: 10					
		1												
	<u> </u>	$Q_i = 3Q_i$	5 + /	45-7	1)10									
		$\varphi_i = 39.5$	<u> </u>	73	- <u></u>	<u> </u>				+				
	· ,	$\frac{\varphi_1}{\text{Third}} = \frac{\varphi_1}{\varphi_1}$ $\frac{\varphi_2}{\varphi_2} = \frac{\varphi_1}{\varphi_1} + \frac{\varphi_2}{\varphi_2}$), 50	 6										
		Third out		<u> </u>										
		<u>imia qua</u>	/3/ N	-50	6		3/ 11	- } v	80 = 17-					
		- 46 - LT	(1410	$\frac{-2m}{f_{1}}$	<u> </u>		/4 ¹	4	180 = 135 19.5					
		6		1.0		<u> </u>		_ = 4	19.2					
		¢3 = 49	·5 +	<u> 135 - 1</u> 42	10/10		<u> </u>		<u></u>	<i>.</i>				
		Q3 = 5	5.45	2										

Extract 4.1: A sample of correct responses to question 4

In Extract 4.1, the candidate used the correct formula in calculating the lower quartile, upper quartile, seventh decile, 80th percentile, variance and standard deviation.

On the other hand, there were a few candidates who performed poorly in this question. In part (a), some candidates used wrong formulae in calculating the first and third

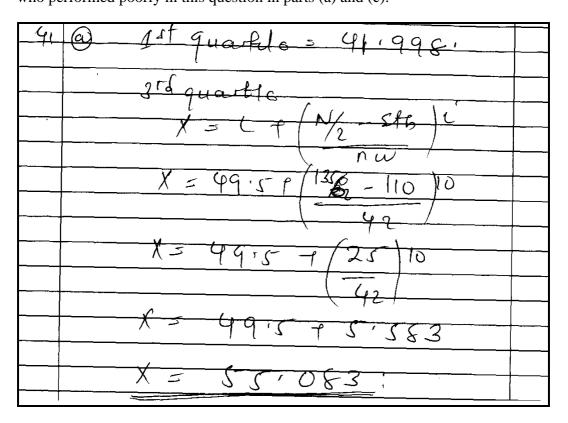
quartiles. For instance, to find Q_1 , they used the formula $\overline{x} = L + \frac{\left(\frac{N}{2} - \sum fb\right)}{n_w} \times i$, with L = 49.5, $\sum fb = 10$, $n_w = 4$ and i = 10 hence obtaining $\overline{x} = 45$ and treated this as Q_1 instead of $Q_1 = 40.596$ grams. Likewise, for Q_3 , they used $\overline{x} = L + \frac{\left(\frac{N}{2} - \sum fb\right)}{n_w} \times i$, with L = 39.5, $\sum fb = 37$, $n_w = 73$ and i = 10 to obtain $\overline{x} = 41.998$ as the third quartile instead of 55.452 grams. Another candidate used the formula $Q_1 = \frac{1}{4}N^{th}$ and obtained $Q_1 = 37$ and $Q_3 = \frac{3}{4}N^{th}$ hence obtained $Q_3 = 110$.

Also in part (b), a few candidates used the improper formula $SIR = \frac{Q_3 + Q_1}{2}$ to calculate the semi-interquartile range, leading them to get 48.024 instead of 7.428 grams. In part (c), some candidates calculated the seventh decile by using inappropriate formula, for

example one candidate used the formula $x = L + \frac{\left(\frac{N}{2} - \sum fb\right)}{n_w} \times i$, with L = 49.5,

 $\frac{N}{2} = 126$, $\sum fb = 110$, $n_w = 42$ and i = 10 hence, he/she obtained x = 55.937 instead of 53.310 grams as a seventh decile. Those candidates did not realise that the seventh decile is expressed as D_7 and the formula used was that for calculating the median. In part (d), some candidates used wrong formulae to calculate the 80th percentile, such as $P_{80} = \frac{80}{100}N^{th}$ hence, obtained $P_{80} = 110$.

In part (e), some candidates faced a challenge on rounding off the answers for variance and standard deviation into three decimal places. The common answers which were observed from the candidates were Var (x)=199.917, 199.9, 199.89 and the standard


deviation of 14.139, 14.1386, 13.138. Instead of the variance of 199.889 and standard deviation of 14.138. Others utilized unsuitable formulae to calculate the variance and

standard deviation. There are a few candidates who used $Var(x) = \frac{\sum x^2}{N} - \left(\frac{\sum x}{N}\right)^2$

with $\sum x^2 = 327732$ and $\sum x = 490.5$ then, they obtained incorrect value of Var(x) = 174.420 and SD(x) = 13.207. Likewise, some candidates used the formula $Var(x) = A + c \frac{\sum fx}{\sum f}$ and substituted A = 44.5, c = 10, $\sum fx = 8670$, $\sum f = 180$

hence they got incorrect answer of Var(x) = 526,167 and SD(x) = 22.938. Those candidates lacked knowledge on statistical formulae. Not only that but also the formula

 $Var(x) = c^2 \left(\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f} \right)^2 \right)$ was used. Then substituted $\sum fx^2 = 8670$, $\sum fx = 180$, c = 10 to obtain Var(x) = 150,092.173 and SD(x) = 387.417. Those candidates could not realize that c in the formula was suitable when computing variance by using the coding method. Extract 4.2 shows a response from a candidate who performed poorly in this question in parts (a) and (c).

$$X = L + (\frac{N_2 - 5F_5}{nw})$$

$$X = 39.5 + (45 - 37) 10$$

$$X = 39.5 + (\frac{6}{73})$$

$$X = 39.5 + (\frac{6}{73})^{10}$$

$$X = 39.5 + (0.10955)^{10}$$

$$X = 39.5 + 2.498$$

$$X = 41.998$$

$$4 = \frac{1}{41.998}$$

$$4 = \frac{1}{41.998}$$

$$\frac{1}{42} = \frac{1}{41.998}$$

$$\frac{1}{41.998}$$

$$\frac{1}{42.9} = \frac{1}{41.998}$$

$$\frac{1}{41.998}$$

$$\frac{$$

Extract 4.1: A sample of incorrect responses to question 4

In Extract 4.1, the candidate did not recall the correct formulae for calculating quartiles and deciles to attempt the question.

2.1.5 Question 5: Sets

This question comprised three parts (a), (b) and (c). Part (a), required the candidates to evaluate A-B in the same set notation if sets A and B are defined by $A = \{x \in \Re: -1 \le x \le 2\}$ and $B = \{x \in \Re: 2 \le x < 5\}$. The second part of this question was part (b), which required the candidates to simplify $[(A-B)\cup(A\cap B)]-[A\cup(A\cap B)]$ by using laws of algebra of sets. In the last part of the question, part (c), the candidates were given a word problem which read: In a class of 17 girls and 15 boys, 22 play handball, 16 play basketball, 12 of the boys play handball, 3 of the girls play neither of the two games. Then, the candidates were required to use Venn diagram to determine:

- (i) The number of girls who play both games.
- (ii) The number of participants who play at least one game.

The analysis of data shows that a total of 12,290(91.4%) candidates scored from 3.5 to 10 marks out of 13,449(100%) candidates who attempted the question. While 1,159(8.6\%) candidates scored from 0 to 3 marks. Generally, the performance of candidates to this question was good. Figure 6 provides the candidates' performance to this question.

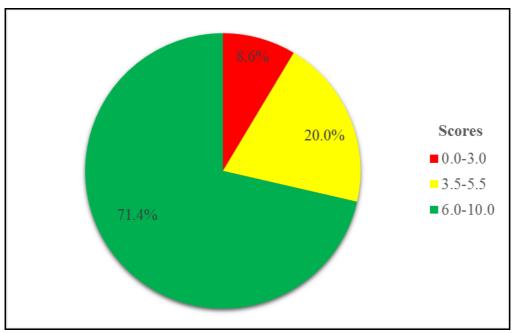
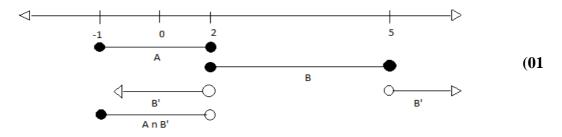



Figure 6: Candidates' Performance in Question 5

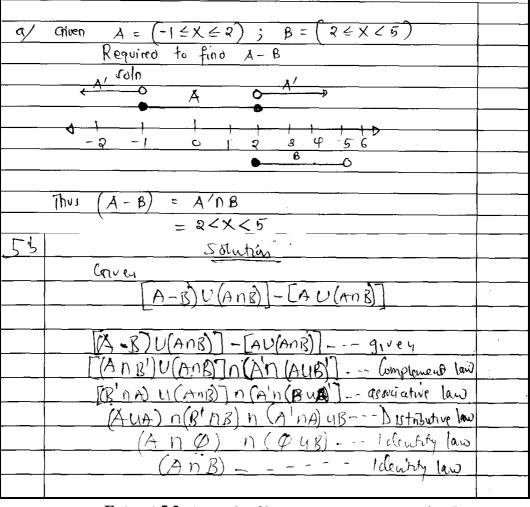
A large number of candidates who answered the question correctly were able to define the set difference law which is $A-B = A \cap B'$ and applied to the given set $B = \{x \in \Re : 2 \le x < 5\}$ to obtain $B' = \{x \in \Re : x < 2 \cup x \ge 5\}$. Then, they used the law of intersection to obtain $A \cap B' = \{x : -1 \le x < 2\}$ which was the required response in part (a). Also, others used the approach of the number line as follows:

Then from the number line they obtained $A \cap B' = \{x \in \Re : -1 \le x < 2\}$.

In part (b), the candidates were able to apply the laws of algebra of sets to simplify $[(A-B)\cup(A\cap B)]-[A\cup(A\cap B)]$ to obtain ϕ . In part (c), the candidates managed to use Venn diagram to determine the number of girls who played both games which is 1, and the number of participants who played at least one game which was 27. Extract 5.1 shows the work of a candidate who answered this question correctly.

j. a). Solulu'	
Given'	
$A = \{X \in \Pi : -1 \leq x \leq 2\}$	
$D = \{x \in \mathbb{R} : z \leq x \leq S\}$	
	······································
$\mathbf{A} - \mathbf{O} = 7,$	
By number line	
x-0	
b ¹ 81	
A	
$A - D = A \cap D^{1}$	
NW A-0= {XEIP: 1 = X < 23.	
: A-D= {X < 14: -1 < X < 23.	

5,	b) Soule
	briver i
	[(A-0) u (AnD)] - [Au(AnD)] guil
	[(A-0) u (AND)] - [AU(AND)] gunt = [(AND) u (AND)] N [AU(AND)] defuntion
	= [AN(D)UD)] n [AU(AND)] durbution low
	= [AN(D)UD)] N [AU(AND)]! dubbution low = [ANM] N [AU(AND)]! complement law
	= EA A (AU (AAA)]' identity low
	$= A n (A)^{1}$ absorption les
	= An Al demayer les
	= q complexed law
s.	c). Soluly
.د	
	3
	17 9115
	2 15 6/13
	22 hard ball 16 baskel ball
	1). number al guls who play both games is 1.
	11) number al participat un play at least
	one yame U 27


Extract 5.1: A sample of correct responses to question 5

In Extract 5.1, part (a), the candidate was able to find A-B from the given sets by using the number line. Whereas in part (b), the candidate applied laws of algebra of sets to simplify $[(A-B)\cup(A\cap B)]-[A\cup(A\cap B)]$. Likewise, in part (c), the candidate managed to use the Venn diagram to determine the number of girls who played both games and of the participants who played at least one game.

Although majority of the candidates performed this question well, there were a few who got this question wrongly. Analysis shows that in attempting this question, the candidates encountered some challenges. In part (a), some candidates defined wrongly A-B as $A-B=A\cup B'$ and others as $A-B=A' \cap B$. Also the candidates failed to follow instructions in spite of being instructed to use the set builder notation, they used listing method as $A-B=\{-1,0,1\}$ which was incorrect. There were also

candidates who had insufficient knowledge on the types of numbers which led them to use interchangeably integers and real numbers.

In part (b), they failed to use the proper algebra laws of set to simplify the given statement. For instance, some candidates defined wrongly the set difference property. In part (c), the number of candidates failed to map the given information on Venn diagram, as a result they got wrong answers in part (c) (i) and (ii). Extract 5.2 shows a sample of responses from the candidate who had no competence in answering this question properly.

Extract 5.2: A sample of incorrect responses to question 5

In Extract 5.2, the candidate failed to define A-B as $A \cap B'$ in part (a). Also, in part (b), the candidate used wrong laws of algebra of sets to simplify $[(A-B)\cup(A\cap B)]-[A\cup(A\cap B)].$

2.1.6 Question 6: Functions

The question had two parts; (a) and (b). In part (a), the candidates were given that $f(x)=2^x$ and $g(x)=\log_2 x$, and were required to (i) find the domain and range of f(x) and g(x), in (ii) to draw the graphs of f(x) and g(x) on the same axes and to comment on the resulting graphs. Part (b), the candidates were given that $f(x)=\frac{2x-x^2}{x^2-2x-3}$ and then asked to :

- (i) write the values of x for which f(x)=0 and the values of x for which f(x)>0.
- (ii) show that $f(x) \rightarrow -1$ as $x \rightarrow \pm \infty$.
- (iii) sketch the graph of f(x) by showing particularly where the curve crosses the *x*-axis and how it approaches its asymptotes.

This question was attempted by 13,449 (100%) candidates. The summary of candidates' performance in this question is presented in Figure 7.

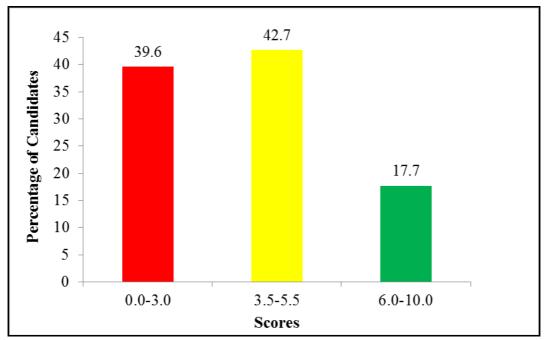
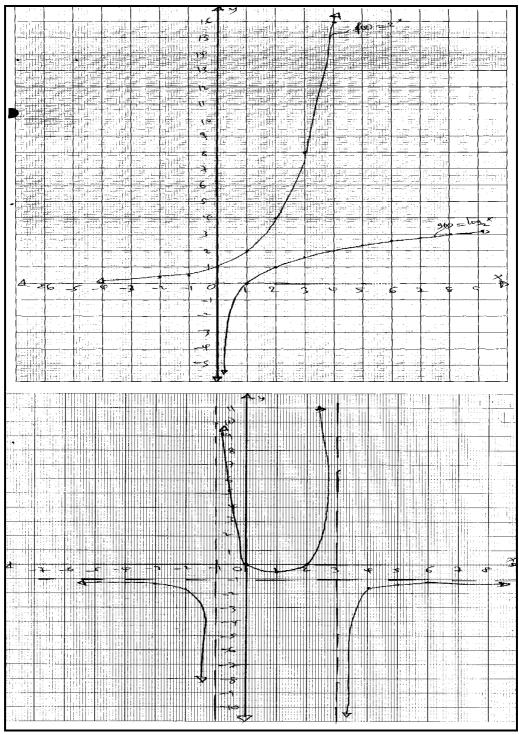


Figure 7: Candidates' Performance in Question 6

Analysis shows that among 13,449 candidates who attempted the question, 5,328(39.6%) candidates scored 0 to 3 marks. While 8,121(60.4%) candidates scored

3.5 to 10 marks. Therefore, the performance of the candidates in this question was good.

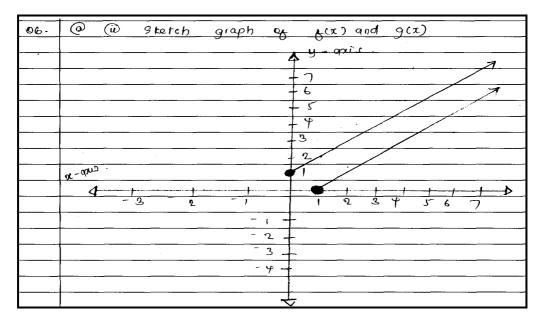

Those candidates who responded correctly to the question in part (a) (i), were able to obtain domain of $f(x)=2^x$ as $\{x:x\in \Re\}$. They also determined the range of f(x) by making x the subject from $y=2^x$ to $x=\log_2 y$ and investigated the resulting function hence they obtained its range = $\{y: y>0\}$. To obtain the domain of $g(x)=\log_2 x$ the candidate applied the concept that, since there is no logarithm of zero or negative number, then domain = $\{x:x>0\}$. Then, they obtained the range of g(x) by making x the subject from $y = \log_2 x$ to $x = 2^y$ and from this they got the range = $\{y: y \in \Re\}$. In part (a) (ii), they managed to plot both graphs of f(x) and g(x) on the same xy – plane and from the graphs commented that g(x) is the inverse of f(x) and vice versa.

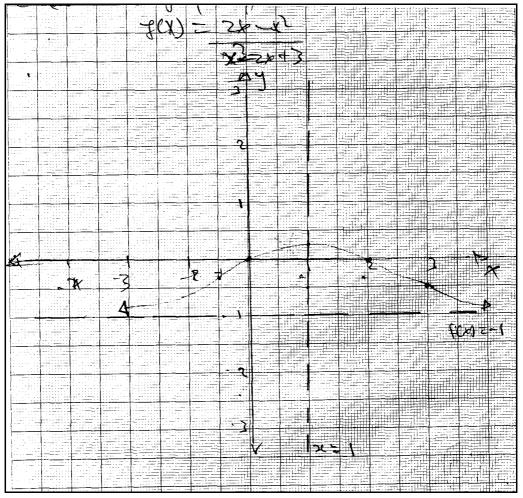
In part (b) (i), the candidates solved correctly the value of x for which f(x)=0 and obtained either x=0 or x=2. Also, for f(x)>0, the candidates got the solution set as $\{x \in \Re: -1 < x < 0 \text{ or } 2 < x < 3\}$ after solving the inequality $\frac{2x-x^2}{x^2-2x-3} > 0$ and got the critical values as x=0 or x=2, x=-1 and x=3. Thereafter, they tested the solution using table and others by using the number line. For part (b) (ii), the candidates obtained f(x)=-1 after applying the limit to $f(x) \rightarrow -1$ as $x \rightarrow \pm \infty$. That is,

$$f(x) = \frac{2x - x^2}{x^2 - 2x - 3} = \frac{\frac{2}{x} - 1}{1 - \frac{2}{x} - \frac{3}{x^2}}, \text{ then as } x \to \pm \infty \quad f(x) = \frac{0 - 1}{1 - 0 - 0} = 1 \text{ hence shown that}$$

 $f(x) \rightarrow -1$ as $x \rightarrow \pm \infty$. In part (b) (iii), the candidates obtained the turning point $\left(1, -\frac{1}{4}\right)$ after finding f'(x) by setting it equal to zero and solving for x then substituting it in f(x) to obtain the value of y. Not only that, but also the candidates managed to compute both horizontal asymptote and vertical asymptote and used it as a reference to sketch the graph. Extract 6.1 is a sample of responses of a candidate who answered this question correctly.

6. (a) given $f(x) = 2^{\times}$ and $g(x) = \log_2 x$ (Domain and range for fix and gix <u>laln</u> for fox $f(x) = x^{\times}$ let fixizy 9 = ζ× for domain make y the subject $4 = 2^{\times}$ On substituting any real number of X it gives real number of 4 then Domain = 1x: XER? Gaskis for range make x the subject ___from__ y = 2× Iny = xInz X = Iny Inz X = lnyInz Since Here is no logarithm of negative number then y>0 · Range = Jy: 4>04 for g(x) = 105 x Domain Make & the subject Let gexi = y. y = log2 X Since there is no logarithm of negative number this x20 · Domain = 1 x : x70 4. Range. Make × The subject. <u>y : log, x</u>. $\frac{2^{y}}{x} = \frac{2^{y}}{x}$ On substituting real number of y of gives real number of × Hen; uat all Range = dy: y ER }.


Extract 6.1: A sample of correct responses to question 6


Extract 6.1, the candidate determined correctly the domain and range of exponential and logarithmic functions and managed to sketch its graph accurately in the same xy -

plane in part (a). While in part (b), the candidate sketched well the graph of the given rational function f(x) as instructed.

Despite the good performance in this question, there were a few candidates who did not perform well due to some challenges. In part (a), they sketched the graph instead of drawing it. In this case, the candidates were required to prepare a table of values for both f(x) and g(x) then plot them on the xy-plane and join it with free hand. Also, they seem to lack enough knowledge of exponential function such as $f(x)=2^x$ whose graph must cross y-axis at (0, 1) and its asymptote x=0 and for logarithmic function such as $g(x)=\log_2 x$, its graph always crosses x-axis at (1, 0) and y=0 is its asymptote. Other candidates did not consider the asymptotes and the intercepts due to lack of enough knowledge, hence they sketched straight lines instead of exponential and logarithmic curves.

Minority of the candidates who answered part (b) (iii) wrongly did not consider the rule of sketching the graph of rational functions. They computed well the vertical and horizontal asymptotes but sketched the lines by using full lines and did not take into consideration that the curve cannot cross the vertical asymptote. Extract 6.2 illustrates incorrect response from one the candidates who attempted this question.

Extract 6.2: A sample of incorrect responses to question 6

In Extract 6.2, the candidate sketched wrongly the graphs of exponential and logarithmic functions in part (a). Likewise, in part (b), the candidate failed to sketch the graph of rational functions as instructed.

2.1.7 Question 7: Numerical Methods

This question consisted of parts (a), (b) and (c). In part (a), the candidates were asked to verify that $x^2 - 2x - 1 = 0$ has a root in the range $2 \le x \le 3$. Part (b) of the question required the candidates to use Secant method with four iterations to obtain an approximation for the root of the equation in (a) correct to three decimal places. Part (c) is divided into three parts (i), (ii) and (iii). In part (c) (i), the candidates were required to use Trapezoidal rule with 5 strips, to obtain an approximation of $\int_{0}^{1} x^2 e^x dx$ correct to

four significant figures. In part (c) (ii), the candidate were asked to use the integration

by parts technique to evaluate the exact value of the definite integral $\int_{0}^{1} x^2 e^x dx$ correct to four significant figures. And in part (c) (iii) the candidate where instructed to use the results obtained in part (c) (i) and (ii) to find an absolute error in the value of $\int_{0}^{1} x^2 e^x dx$.

Out of 13,449 (100%) candidates who attempted this question, 4,733(35.2%) candidates scored 6 to 10 marks, 4,265(31.7%) candidates scored 3.5 to 5.5 marks while 4,451(33.1%) candidates scored 0 to 3 marks. Figure 8 presents the summary of candidates' performance in this question.

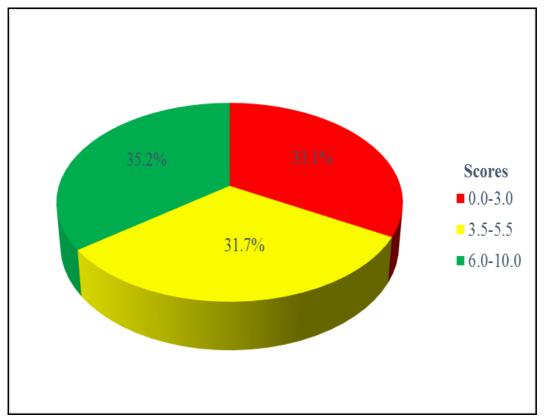


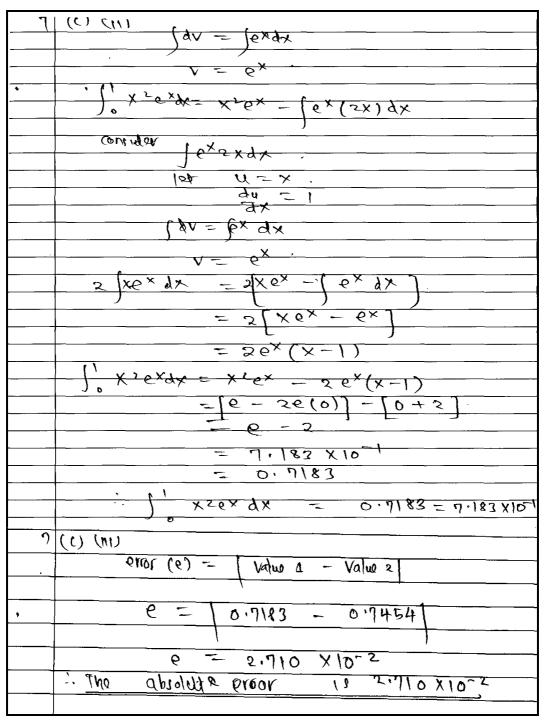
Figure 8: Candidates' Performance in Question 7

From Figure 8, it is observed that the candidates' performance in this question was good since 66.9 per cent of the candidates scored within the range of 3.5 to 10 marks.

The majority of the candidates who scored high marks had knowledge of numerical integration. In part (a), the candidates applied $f(x_1) \cdot f(x_2) < 0$ to check if the given function had the root in the given range. They calculated the value of f(2) and f(3)

which were -1 and 2 respectively. Then, since $f(x_1) \cdot f(x_2) = -2 < 0$ hence they concluded that there exists a root between x = 2 and x = 3.

In part (b), the candidates were familiar with Secant formula and applied it after recalling it as $x_{n+2} = x_n - \frac{(x_{n+1}-x_n)}{f(x_{n+1}) - f(x_n)} \times f(x_n)$ and carried out four iterations. In the first iteration when n=1, the candidates used $x_1 = 2$ and $x_2 = 3$ to obtain $x_3 = 2.33333$, then they performed the next iteration until the fourth iteration was reached and got the root 2.414 to three decimal places. In part (c) (i), they were able to find the value of h and obtained h=0.2 by using the formula $h = \frac{b-a}{n}$ where a=0, b=1 and n=5. Then, the candidates used the value of h and the given limits to construct a table of values for x^2e^x as shown below:


	<i>Y</i> ₀	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	${\mathcal Y}_4$	<i>Y</i> ₅
x	0	0.2	0.4	0.6	0.8	1.0
x^2e^x	0	0.04886	0.23869	0.65596	1.42435	2.71828

Thereafter, they used the values from the constructed table together with the trapezoidal rule formula $A = \frac{h}{2} [y_0 + y_5 + 2(y_1 + y_2 + y_3 + y_4)]$ to estimate the value of $\int_0^1 x^2 e^x dx$ to four significant figures and obtained 0.7454.

In part (c) (ii), the candidates demonstrated adequate knowledge of integration. They applied "ILATE" procedure so as to identify the function which will be u and dv. Then, the candidates let $u = x^2$ and differentiated it to obtain du = 2xdx and $dv = e^x dx$ then integrated it and got $v = e^x$. Thereafter, recalled the formula of integration by parts which is $\int u dv = uv - \int v du$, and substituted u and dv as $\int_{0}^{1} x^2 e^x dx = \left[x^2 e^x\right]_{0}^{1} - \int_{0}^{1} x e^x dx$ which led to $\int_{0}^{1} x^2 e^x dx = \left[x^2 e^x\right]_{0}^{1} - 2\left(\left[x e^x\right]_{0}^{1}\right) + 2\left[e^x\right]_{0}^{1}$ and got 0.7183, the required answer. In part (c) (iii), they subtracted the actual value from approximated value of the

integral $\int_{0}^{1} x^2 e^x dx$ to compute the absolute error and obtained 0.0271. Extract 7.1 illustrates a correct response from one of the candidates.

<u> </u>	(9) solh			
	Condition for 1001 perwein influent			
	$f(x_1) \cdot f(x_2) = 20$			
	$4uxin \chi_2 - 2\chi \leftarrow 1 = 0$			
	f(X1) = X12 -2X-1			
	f(2) = 4 - 4 - 1			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$f(x_2) = 3^2 - (3 \times L) - 1$			
	FX21 = 2			
	$f(x_1) \times f(x_2) = 2 \times -1$			
	$f(x_1) \cdot f(x_2) = -2$			
	$since f(x_1) \cdot f(x_2) < 0$			
	: The root her between 24×43			
	Hero varified.			
	(b) $Soln$			
	$f(x) = x^2 - 2x - 1$ $secant formula$ $Mu = - (X + 1 - X + 1) + (X + 1)$			
	secant formula			
	$\frac{\chi_{1+2} - \chi_{1} - (\chi_{n+1} - \chi_{n}) f(\chi_{n})}{-f(\chi_{n+1}) - f(\chi_{n})}$			
	-f(XnH) - f(Xn)			
	$f(X_1) = 2$ $f(X_6) = -1$			
	$X_{2} = X_{6} - (X_{1} - X_{0}) - f(X_{6})$			
	$f(X_1) = 2 \qquad f(X_6) = -1$ $X_2 = X_6 \qquad - (X_1 - X_6) \qquad f(X_6)$ $f(X_1) - f(X_6)$			
	,			
	$X_2 = 2 - (3 - 2) \times -1 = 2 + 1$			
	$\begin{array}{c} X_{2} = 2 = (3-a) \times -1 = 2 \pm 1, \\ 2 \pm 1 & & & \\ X_{2} = 2 \cdot 3 \cdot 3 & & \\ X_{3} = X_{1} = (X_{2} - X_{1}) \int (X_{1}) \\ f(X_{2}) = f(X_{1}) \end{array}$			
	$X_2 = 2.313$			
	$X_{1} = X_{1} - (X_{2} - X_{1}) f(X_{1})$			
	$f(X_2) - f(X_1)$			
	$f(x_1) = -0.223$			

Extract 7.1: A sample of correct responses to question 7

In Extract 7.1, the candidate showed great knowledge of numerical integration as he/she managed to use $f(x_1)f(x_2) < 0$ to judge the given root range in part (a). While in part (b), the candidate applied the Secant method properly to approximate the root

for the given equation. And in part (c), the candidate used the trapezoidal method to evaluate the given definite integral and then calculated an absolute error correctly.

Minority of the candidates who attempted this question did not perform well due to inadequate knowledge in numerical integration. In part (b), some candidates used inappropriate formula to evaluate the root of the given function. For example, a few candidates used $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ which is Newton's Raphson formula instead of Secant method. In part (c) (i), some considered the number of strips as the number of ordinates. In part (c) (ii), some candidates failed to solve $\int_{a}^{1} x^2 e^x dx$ using integration by part method. For example, they let $u = e^x$ and $v = x^2$ which led to an incorrect answer. Also, in part (c) (iii), some candidates had no knowledge of error. They used a wrong formula in computing absolute such error, as Absolute Error = Exact Value - Approximated Value . While others computed absolute Absolute error = $\frac{\text{Exact Value} - \text{Approx Value}}{\text{Exact Value}}$ instead error as of

Absolute Error = |Exact. Value – Approx. Value|. Extract 7.2 shows parts (b) and (c) of a sample of an incorrect response from one of the candidates.

2	(d) when the (d)
	Sun 2-2×+1=0
-	Frany - F(K) = 22-2K-1
	$f(x_0) = x_0^2 - 2x_0 - 1$
	$f'(x_0) = 2x_0 - 2$
	$frum = x_{0+1} = x_0 - f(x_0)$
	$f'(x_n)$
	pr neo 201 = 200
	Khon to get no.
	-1+2 = Q.S.
	2
	$n = 0$ $2c_1 = 2c_0 - 3c_0 - 1$
	2265-2
	$2g = 0.5 - 10.0^2 - 1 - 1$
	(-2
	1 ⁴ 14ahin, 29 = 1.95.
	where
	when $n=1$, $2n=1.75-(1.75)^2-2(1.75)^{-1}$
	2(10)-2
	2 ² (Haubon, 20 = -0-758 2.708
	when n=2, 20 = 2.708 - (9.203)2-2(903)2-1
	2(2.708 7-2
I	3^{n} 14 metrum, $2c_1 = 2.439$

1 1	(b) $4 = 3$, $x_{4} = 2.439 - (R.439)^{2} - 2(2.434) - 1$				
	$\frac{192}{2} + \frac{1}{123} + \frac{1}{24} + \frac{1}{24$				
	$\frac{p(x,y)-2}{p(x,y)-2}$				
	4th with 24 = 2.414.				
7@.	Uriven.				
Q.	$\int x^2 e^x dx$	<u> </u>			
	$-\int \frac{2}{\sqrt{-2}} e^{-\frac{2}{\sqrt{-2}}} e^{-$				
<u> </u>	soln.	—— <u> </u>			
	h = 6 - 9		mbor of chips - 1.		
			$\frac{mpor}{5} = \frac{1}{2}$		
	D: h=1-0		5 - 1 #		
	<u>4.</u>	. <u> </u>			
	n= <u>0.25</u>				
	$x y = x^2 e^x$	2	Niddle torm		
			Middle Ipms		
	0.25 0.0802		0-0802		
	0.5 0.4182.		0.4122		
	0.75 1.1908 1. 0.7183	0.0102	1.1908		
	Total · s	2.7183.	1.6832		
	1 1 5.0				
	1500 = h [9, +70	4 ~2 (@	Ed Middle)		
			40-c2 2		
	= 0.25 [2.718 2	<u>5 4 2(1</u> .	6832/1.		
	· ·	2			
	= 0.125 [8.09	8477			
<u> </u>	$A_{rec.} = 0.9606.$				
7	9. 9) Happio	idal-rule A	= h [yotyn + 2 Smiddly horn]		
j					
· · · · ·		0.25 [2	-718281822 f2 (1·683244826		
		l			
		2	0.71828		
	- Area q TH	approval	tule = 0.71828		

Extract 7.2: A sample of incorrect responses to question 7(b) and (c)

In Extract 7.2, the candidate used Newton's Raphson formula instead of Secant formula as per instruction in part (b) of the question. While in part (c), the candidate was not

able to realize the difference between ordinates and strips leading him/ her to obtain the wrong value of h and hence failed to approximate the value of the given integral.

2.1.8 Question 8: Coordinate Geometry I

The question comprised three parts (a), (b) and (c). In part (a), the candidates were asked to determine the possible value of k when a perpendicular distance of point (1, k) to the line 6x+9=8y is 5.5. In part (b), the candidates were required to find the tangent of the acute angle between the curves $y=2x^2-3$ and $y=x^2-5x+3$ which intersects at points U and W, of which W is in the fourth quadrant. Furthermore, in part (c), they were required to find the equation of a circle in the form of $x^2 + y^2 + 2gx + 2fy + c = 0$ which passes through points A(0, 1), B(4, 3) and C(1, -1).

The analysis indicates that the performance of the candidates who scored marks from 0 to 3 were 45.8 per cent, while 34.2 per cent scored 3.5 to 5.5 marks and 19.9 per cent scored 6 to 10 marks. Figure 9 presents the candidates' performance summary for this question.

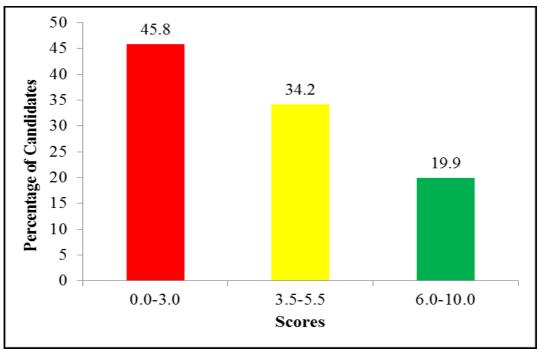


Figure 9: Candidates' Performance in Question 8

From Figure 9, it is observed that 54.1 per cent of the candidates scored 3.5 to 10 marks indicating that, the performance of the candidates in this question was average.

The candidates with good performance in the question demonstrated the following competences. Those who answered part (a) correctly were able to use the perpendicular distance formula $d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$ of a point from a line to determine the value of k. They were able to substitute the value of $x_1 = 1$ and $y_1 = k$ from point (1, k) in the line 6x + 9 = 8y and d = 5.5 in a formula, then they obtained the values of $k = \frac{35}{4}$ or k = -5. In part (b), the candidates were also able to use the formula $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ to find the tangent between two curves. They determined the points of intersection and from which W is at (1, -1) in the fourth quadrant. Thereafter, they substituted the value of slopes $m_1 = 4$ from curve $y = 2x^2 - 3$ and $m_2 = -3$ from $y = x^2 - 5x + 3$ to get $\tan \theta = \left| -\frac{7}{11} \right| = \frac{7}{11}$ which was the correct answer.

Finally, in part (c), most candidates were able to find the equation of a circle which passes through points A(0,1),B(4, 3)and C(1,-1)in the form of $x^{2} + y^{2} + 2gx + 2fy + c = 0$. They substituted these points A, B and C in the equation and formed the three equations, that is 1+2f+c=0, 25+8g+6f+c=0 and 2+2g-2f+c=0 respectively. By solving these equations they got $g=-\frac{5}{2}$, f=-1and c=1. Thus, they used these values to get the required equation of a circle which is $x^{2} + y^{2} - 5x - 2y + 1 = 0$. Extract 8.1 shows a good response from one of the candidates who performed well in this question.

8.	(a) Perpendicular distance	
	$d = \frac{ax + by + C}{\sqrt{a^2 + b^2}}$	
	$\sqrt{a^2 + b^2}$	
	6x + 9 = 8y	
	6x - 8y + 9 = 0	
	$d = \frac{6x - 8y + 9}{6^{7} + 8^{2}} \text{at } (1, k)$	
	$16^{\circ}+8^{\circ}$ at $(1, K)$	
	5.5 - 10.84 + 6	
	5.5 = 6 - 8k + 9 10 $55 = 15 - 8k$	
	$\frac{15 - 8k = 55}{-8k = 40} \text{ or } \frac{-(15 - 8k)}{-8k} = 55 + 15$	
	$-8k = 40$ or $-8k = 55 \pm 15$	
	k = -5 or $k = 35/4$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$y = x^2 - 5x + 3$	
	$2x^2 - 3 = x^2 - 5x + 3$	
	$x^2 + 5 \times -6 = 0$	
	x = 1 cr x = -6	
	when	
	$\begin{array}{cccc} x = 1 & x = -6 \\ y = -1 & y = 69 \\ \vdots & u = (-6, 69) & and & W = (1, -1) \end{array}$	
	$y = -\frac{1}{2}$ $y = 0$	
	(0, 0, -(1, 0)) mig $(1, -1)$	
L		

Extract 8.1: A sample of correct responses to question 8

In Extract 8.1, part (a), the candidate was able to use the correct formula of distance to determine the value of k. While in part (b), the candidate found the tangent of the acute angle between curves correctly and finally in part (c), they wrote the equation of the circle which passes through three points given.

The analysis shows that, some candidates failed to reach to the required solution while attempting this question due to misconceptions and lack of knowledge. For instance in part (a), a few candidates failed to find the value of k as they were unable to substitute the values of a given point (1, k) and d=5.5 in a perpendicular distance formula of a

point from a line that is $d = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$ to get k = -5 or $k = \frac{35}{4}$. For example, one among the candidates failed to understand the requirement of the question by finding the slope $m_1 = \frac{6}{8}$ from the given line 6x + 9 = 8y. Likewise $m_2 = \frac{-8}{6}$ using $m_1m_2 = -1$ which is the condition for two lines to be perpendicular instead of determined the value of k using perpendicular distance formula. In part (b), they failed to find the point of intersection between two curves $y = 2x^2 - 3$ and $y = x^2 - 5x + 3$. So they got points U(0, -3) and W(-5, 47) as their points of intersection instead of U(-6, 69) and W(1, -1). Then, they used those wrong points to get the equation of the line 10x + y + 3 = 0, rather than finding the tangent of the acute angle at point W which was $\tan \theta = \left| -\frac{7}{11} \right| = \frac{7}{11}$. Others solved two curves simultaneously and obtained the equation of the line 10x + y - 9 = 0 as their answers for the tangent of the acute angle, which was an incorrect approach. Furthermore, some candidates were able to get those points of intersection which were U(-6, 69) and W(1, -1), but they used those points to find the solution of intersection which were u(-6, 69) and W(1, -1), but they used those points of intersection which were u(-6, 69) and W(1, -1), but they used those points to find the slope which was $\tan \theta = \frac{69 - -1}{-6 - 1} = -0.101576$ using the formula $\tan \theta = \frac{y_2 - y_1}{x_2 - x_1}$ which was a wrong approach and that led to a wrong answer.

In part (c), they substituted the given points A(0,1), B(4,3) and C(1,-1) in the wrong expression of the circle which was $(x-x_1)(x-x_2)(x-x_3)+(y-y_1)(y-y_2)(y-y_3)$ instead of substituting the given points into the standard equation of the circle which is $x^2 + y^2 + 2gx + 2fy + c = 0$. Then, solving for the values of g, f and c. Thereafter, they substituted those points in wrong expression and ended up with expression

 $x^{3} + y^{3} - 5x^{2} - 3y^{2} + 4x - y + 3$ which was not the required equation. Extract 8.2 is a sample of an incorrect response from one of the candidates.

8	Given their
	Perpendicular chitance = 5.5
	GV + O = SU
	Perpendicular chiltering = E:
	perter enclande = 0.5
	From perpendicular distance.
	perpendentital distance.
	$\mathcal{M}_{1}\mathcal{M}_{2}=-1$
	But M. => &y = 6x+9
	-3 -2 BX + 9/ 8 8
	M. 2 6/
	8
	$p_{4} + M_{1} = \frac{1}{2}$ $m_{1} + M_{1} = \frac{1}{2}$ $b_{1} + m_{1} = \frac{1}{2}$
	$G_{p}M_{2} = -1$
	8
	M 41
	$M_2 = -8/2$
8	6) Then
	$at y = x^2 - 3$
	y = -2 or y = 47.
`	9 = -3 or y = 47,
	7 hers.
	$m = \Delta \mathcal{Y}$
	$m = 9_2 - 9_1 = 473$
	X2-X1 -5-0
	m = -10
	7 hem
	m = by Using point (U1-3)
	Δχ
	-10 = 9 + 3
	χ-ο
└───┤	-10x = 9+3.
	y = -10x - 3
	-10x-9-3=0
	10x + y + 3 = 0
	-'. The Tangent '13 10x+9+3=0.

C	Setution
	qui A(0,1) B(43) and C(1,-1)
	Kecall
	$(x - t_1)(x - t_2)(x - x_3) + (y - y_1)(y - y_1)(y - y_1)$
	then
	(x-0)(x-u)(x-1)+(y-1)(y-3)(y+1)
	x - ar-0-0
	$(x^{2}-ux)(x-1) + (y^{2}-3y-y+3)(y+1)$
	x3 -x2 -un tuk + y7 ty2 - 3y2 - 3y - y1 - y174t
	x?- 5x~+ux + 43 -24~-3/4-4-4+74+3
	x3-5x2 tux ty3-342-4 t]
	x 7 + y 7 - 5x 2 - 3y 2 + ux - y + 3
	-

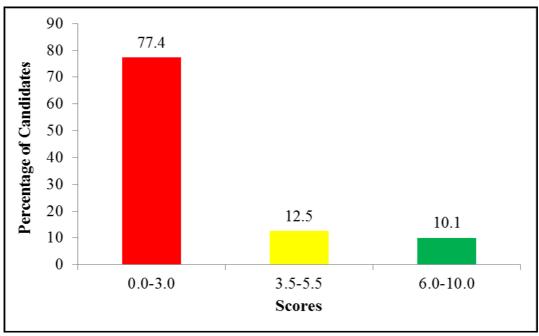
Extract 8.2: A sample of incorrect responses to question 8

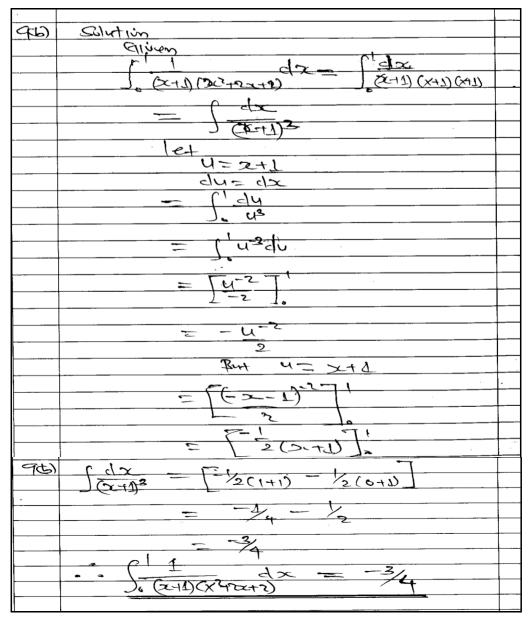
In Extract 8.2, the candidate did not realize the correct formula for the perpendicular distance of a point from a line to determine the value of k in part (a). While in part (b), the candidate applied the formula used to find the slope of a straight line instead of finding the tangent of an acute angle between the given curves. In part (c), the candidate failed to establish the equation of a circle passing through three points.

2.1.9 Question 9: Integration

Question 9 comprised parts (a) and (b). In part (a), the candidates were given $I_m = \int \sin^m x dx$ and required to show that $I_m = \frac{1}{m} \left(-\cos x \sin^{m-1} x + (m-1)I_{m-2} \right)$, and hence find the value of $\int \sin^3 x dx$. In part (b), the candidates were required to evaluate $\int_0^1 \frac{1}{(x+1)(x^2+2x+2)} dx$ and correct the answer in three decimal places.

The data analysis shows that among 13,448(99.99%) candidates who attempted the question 10,413(77.4%) candidates scored 0 to 3 marks, while 1,679(12.5%) candidates scored 3.5 to 5.5 marks and 1,356(10.1%) candidates scored 6 to 10 marks. The performance of candidates' summary is given in Figure 10.




Figure 10: Candidates' Performance in Question 9

Generally, the candidates' performance in this question was weak as the percentage of candidates who scored 0 to 3 marks is high.

Most of candidates failed to answer this question correctly due to inadequate knowledge in integration techniques. For instance in part (a), some candidates failed to transform $\int \sin^m x dx$ into $\int \sin^{m-1} x \sin x dx$, instead they let $x = \pi - x$ from the given integral. Then, they used the substitution $u = \sin(\pi - x)$. Hence, they ended up with $m \cos x I_m = -\cos x \operatorname{Im} + \sin^m x \sin x$ although they concluded as $I_m = \frac{1}{m} \left(-\cos x \sin^{m-1} x + (m-1)I_{m-2} \right)$. Others failed to substitute the value of m=3 by comparing $\sin^m x = \sin^3 x$ into $I_m = \frac{1}{m} \left(-\cos x \sin^{m-1} x + (m-1)I_{m-2} \right)$. Instead, they expressed $\sin^3 x$ into $(1 - \cos^2 x) \sin x$ and used the substitution $u = \cos x$. Therefore, they ended up with $\int \sin^3 x dx = -\cos x + \frac{\cos^3 x}{3} + c$.

In part (b), those who failed had insufficient knowledge on partilization and factorization. For example, instead of factorizing $x^2 + 2x + 2$ to get $(x+1)^2 + 1$, they got (x+1)(x+1) and ended up with an incorrect answer as

 $\int_{0}^{1} \frac{dx}{(x+1)(x^{2}+2x+2)} = \int_{0}^{1} \frac{dx}{(x+1)(x+1)(x+1)} = \frac{-3}{4}$ Also, a few candidates failed to choose a suitable substitution to make the given integral easier to evaluate. For instance, they used the substitution $t = x^{2} + 2x + 2$ instead of using the substitution of $x+1 = \tan\theta$ after factorizing $(x+1)(x^{2}+2x+2)$ into $(x+1)((x+1)^{2}+1)$ which led to an incorrect answer of 0.15. Extract 9.1 provides a sample of an incorrect response from one of the candidates in part (b) of the question.

Extract 9.1: A sample of incorrect responses to question 9(b)

In Extract 9.1, the candidate failed to factorize the expression $x^2 + 2x + 2$, leading to integration of an incorrect integral and obtaining a wrong answer.

In spite of the majority of candidates who failed to attempt this question correctly, there were a few candidates who answered it correctly. Thus, the candidates who scored high marks on this question, in part (a) were able to show step by step the reduction formula for sine by starting transforming $\int \sin^m x dx$ into $\int \sin^{m-1} x \sin x dx$. Then by using the integration by parts technique by letting $u = \sin^{m-1} x$ and $dv = \sin x dx$. Thereafter, they ended up with equation $I_m = \frac{1}{m} \left(-\sin^{m-1} x \cos x + (m-1)I_{m-2} \right)$ which was required to show where *m* is any integer. Thereafter, they used it to find $\int \sin^3 x dx$, by substituting the value of m = 3 and obtained $I_3 = \frac{1}{3} \left(-\sin^2 x \cos x - 2\cos x \right) + c$.

For part (b), they were able to integrate the integral based on partilization technique by letting $\frac{1}{(x+1)(x^2+2x+2)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+2x+2}$ in order to decompose it and obtained the

value of A=1, B=-1 and C=-1. Finally they integrated $\int_{0}^{1} \frac{1}{x+1} dx - \int_{0}^{1} \frac{x+1}{x^{2}+2x+2} dx$

and got the correct answer of 0.235. Extract 9.1 shows one of a correct response from one of the candidates.

46	SUL	
	$\lim_{x \to \infty} \int \sin^{n} x dx$	
	J	
	= [sin x sin ^{m-1}]x	
	0	
	4 - Sippa=1 Sin X	
	$du = (m-1) \left(\sin^{m-2} X \right) \left(\cos X \right) dX$	-

$$V = \int \sin x = -\cos x$$

$$\int u \, dv = \int u \, dv - \int u \, dv$$

$$\int u \, dv = \int u \, dv - \int u \, dv$$

$$\int m = -\cos x \sin^{m-3} x + m - 2 \int \sin^{m-2} x (\cos x)(m-a) \sin^{m-3} x \, dx$$

$$= -\cos x \sin^{m-3} x + m - 2 \int \sin^{m-2} x (\cos^{3} x) \, dx$$

$$= -\cos x \sin^{m-3} x + (m-4) \int \sin^{m-2} x (4 - \sin^{3} x) \, dx$$

$$= -\cos x \sin^{m-3} x + (m-4) \int \sin^{m-2} x - \int \sin^{m} x \, dx$$

$$= 1 m = -\cos x \sin^{m-3} x + (m-4) (1 m - 2 - 1 m)$$

$$= 1 m (m-1) = -\cos x \sin^{m-3} x + (m-4) (1 m - 2 - 1 m)$$

$$= 1 m (m-1) = -\cos x \sin^{m-3} x + (m-4) (1 m - 2 - 1 m)$$

$$= 1 m (m - 1) = -\cos x \sin^{m-3} x + (m-4) (1 m - 2 - 1 m)$$

$$= 1 m (m - 1) = -\cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (m - 2) = -\cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (m - 2) = -\cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (m - 2) = -\cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - \cos x \sin^{m-3} x + (m - 4) (1 m - 2 - 1 m)$$

$$= 1 m (1 - 1 m (1 - 1 m - 2 - 1 m)$$

$$= 1 m (1 - 1 m (1 - 1 m - 2 - 1 m)$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1 m))$$

$$= 1 m (1 - 1 m (1 - 1 m (1 - 1$$

Comparing wells	+>
0 = A + B	
B=-1	
$\frac{1}{(X+1)(X^{2}+2X+2)} = \frac{1}{(X+2)} $	
$\int (X+1)(X+2x+2) + 2 + 2 + 2 + 2$	
$= \ln (x+1) - \int x+1 dx$	
$let u = X^2 + 2X + 2$	
$\frac{du = \mathbf{z}(x+1) dx}{\overline{z} \cdot \overline{z}}$	
22	
$\int \frac{1 du}{\sqrt{u z}} = \frac{1}{2} \ln(u)$	
Juz 2	
$= \left[\ln (x+1) - \frac{1}{2} \ln (x^{2}+2x+2) \right]$	
$= \left[\ln(2) - \frac{1}{2} \ln(5) \right] - \left(\ln(2) - \frac{1}{2} \ln(2) \right)$	<u>л</u> 1
	ļ
dx = 0.235	
$\int (X+1) (X+2x+2)$	·

Extract 9.2 A sample of correct responses to question 9

In Extract 9.2, in part (a), the candidate was able to use the techniques of integration by parts to show the required reduction formula of $\int \sin^m x dx$. Then, he/she used the obtained formula to integrate $\int \sin^3 x dx$. In part (b), the candidate was able to evaluate the value of definite integral correctly to three decimal places.

2.1.10 Question 10: Differentiation

The question had parts (a), (b) and (c). In part (a), the candidates were required to differentiate $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to x. In part (b) (i), the candidates were required to use Maclaurin's theorem to find a series expansion of $\ln(1+x)$ up to the term containing x^4 . In (b) (ii), they were required to use the results from expansion of $\ln(1+x)$ by using Maclaurin's theorem to compute $\ln(1.02)$ to four decimal places.

Furthermore, in part (c), the candidates were given the function $f(x, y) = \sin xy$, and were required to find $\frac{\partial^2 f}{\partial x \partial y}$.

The analysis of data shows that, among 13,441 (99.9%) candidates who answered the question, 8,570 (63.7%) candidates scored 0 to 3 marks as shown in Figure 11. A total of 2,204 (16.4%) candidates scored 3.5 to 5.5 marks and 2,667 (19.8%) candidates scored 6 to 10 marks.

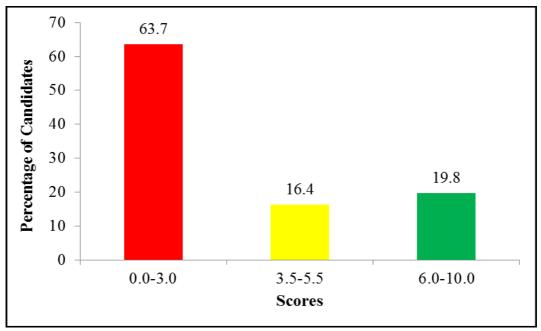


Figure 11: Candidates' Performance in Question 10

The candidates' performance summary in Figure 11 identifies that, the performance is average as 36.2 per cent of the candidates scored from 3.5 to 10 marks.

Candidates with good performances in part (a) show good ability to differentiate the

inverse of cosine and use the quotient rule technique $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ to differentiate $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect of x. They considered $u = 1-x^2$ and $v = 1+x^2$ from $\cos y = \frac{1-x^2}{1+x^2}$. Then, they got $\frac{dy}{dx} = \frac{2}{1+x^2}$. In part (b) (i), the candidates were able to

use Maclaurin's theory $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \frac{x^4}{4!}f''''(0)$ to find the series expansion of $\ln(1+x)$ up to the term containing x^4 and obtained $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$. In part (b) (ii), they were able to use the results obtained in part (b) (i) to compute $\ln(1.02)$ to four decimal places by transforming $\ln(1.02)$ into $\ln(1+0.02)$ where x = 0.02. Then, they substituted x = 0.02 into $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ as $\ln(1.02) = 0 + 0.02 - \frac{(0.02)^2}{2} + \frac{(0.02)^3}{3} - \frac{(0.02)^4}{4}$ to get $\ln(1.02) = 0.0198$ to four decimal places.

Lastly, in part (c), they were able to differentiate first with respect to y as $\left(\frac{\partial f}{\partial y}\right) = x \cos xy$ and second with respect to x as $\frac{\partial^2 f}{\partial x \partial y} = \cos xy - xy \sin xy$. Extract 10.1 shows a sample of a correct response from one of the candidates.

-		
10.	(a) $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$	
	$(1+x^2)$	
	Differentiating	
	$du = -1$, $d(1-x^2)$	
	$\frac{dy}{dx} = -1 \cdot \frac{d}{1-x^2} \left(\frac{1-x^2}{1+x^2}\right)$	
	$= -(1+x^{2}) \cdot d(1-x^{2})$ $\sqrt{1+2x^{2}+x^{4}-1+2x^{2}-x^{2}+dx(1+x^{2})}$	
	$\sqrt{1+2x^2+x^4-1+2x^2-x^4} dx (1+x^2)$	
	$= -(1+x^2) \cdot d/(-x^2)$	
	$\frac{1}{(4x^2)} dx (1+x^2)$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\frac{1}{2x}$ $\frac{1}{2x}$ $\frac{1}{2x}$	
	$= -(1+x^2) \cdot [(1+x^2)(-2x) - (1-x^2)(2x)]$	
	$2x$ $(1+x^2)^2$	
	$= -(1+x^2) \cdot [-2x-2x^3-2x+2x^3]$	
	$\frac{1}{2 \times (1 + x^2)^2}$	
	$= -(1+x^2)(-4x)$	
	$\frac{1}{2 \times (1 + x^2)^2}$	
	du = 2	
	$\frac{dy}{dx} = \frac{2}{1+x^2}$	
	(b) (i) $f(x) = \ln (1+x) - f(c) = 0$	
	(b) (c) $f(x) = \ln (f+x)$ $f(c) = c$ f'(x) = -1 $f'(c) = 1f(x) = -1$	
	l+x	
	$f'''(x) = -(1+x)^{-2} \qquad f''(c) = -1$ $f'''(x) = -2(1+x)^{-4} \qquad f'''(c) = -2$ $f'''(x) = -6(1+x)^{-4} \qquad f''(c) = -6$	
	$f^{(m)}(x) = -2(1+x)^{-4} \qquad f^{(m)}(o) = 2$ $f^{(m)}(x) = -6(1+x)^{-4} \qquad f^{(m)}(o) = -6$	
	$f = -6 (1+x)^{-4}$ $f = -6$	
L		

10. 6 From Madauvinis theirom	
$f(x) = f(0) + x f'(0) + x^{2} f''(0) + x^{3} f''(0) + x^{4} f^{4}(0) + x$	
21 31 4	
$\frac{1}{2!} \ln (1+x) = 0 + x - \frac{x^2}{2!} + \frac{2x^3}{2!} - \frac{6x^4}{4!} + \frac{1}{2!}$	
21 31 41	
$\ln (1+x) = x - x^{2} + x^{3} - x^{4} +$	
2 3 4	
(ii) $\ln(1.02) = \ln(1+0.02)$	
X = 0.02	
$\ln (1+0.c2) = 0.02 - 0.02^{2} + 0.02^{3} - 0.c2^{4} +$	
$\ln (1.02) = 0.0198$	
$c) f(x,y) = \sin x y$ $\frac{\partial f'}{\partial y} = x \cos x y$	
$df' = x \cos x y$	
ду	
$9_3 t = 9 (9t)$	
$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$	
$= \frac{\partial}{\partial x} \left(x \cos x y \right)$	
$= \cos xy + x \left(-y\sin xy\right)$	
$\partial^2 f = \cos xy - xy \sin xy$	

Extract 10.1: A sample of correct responses to question 10

In Extract 10.1, the candidate had enough skills to differentiate the inverse of cosine in part (a). Whereas in part (b), the candidate established Maclaurin's series of logarithmic functions to find the series correctly. Then he/she used it to compute $\ln(1.02)$ properly. In part (c), the candidate applied the concept of partial derivative to differentiate the given function.

Furthermore, the analysis shows that there were candidates who performed this question poorly as they faced some challenges. In part (a), some candidates used inappropriate rule to differentiate the inverse of cosine. For instance, some of them

failed to use the quotient rule after taking
$$u = \frac{1 - x^2}{1 + x^2}$$
 from $y = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$. Instead,

they differentiated using the product rule as $\frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right) = \frac{udv}{dx} + \frac{vdu}{dx}$ and they ended up with an incorrect derivative which was $\frac{dy}{dx} = \frac{-(-2x^3 + x^2 + 1)}{\sqrt{1-\left(\frac{1-x^2}{1+x^2}\right)^2}}$.

For part (b), they failed to get the correct values of f(0), f'(0), f''(0), f''(0), f'''(0)and f''''(0) in Maclaurin's expansion of $\ln(1+x)$ hence got the wrong values of 1, $\frac{1}{2}$, $\frac{-1}{4}$, $\frac{1}{4}$ and $\frac{-1}{4}$ respectively, so they ended up with the equation $\ln(1+x)=1+\frac{1}{2(1+x)}-\frac{2}{4(1+x^4)}+\frac{3}{1+x^3}$ rather than getting the values of f(0)=0, f'(0)=1, f''(0)=-1, f'''(0)=2! and f''''(0)=-3! to get the correct or the required Maclaurin's expansion of $\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}$. Others failed to transform $\ln(1.02)$ into $\ln(1+0.02)$ to get x=0.02 and substituted it into the incorrect Maclaurin's expansion and got $\ln(1.02)=0.07189$ which was a wrong answer.

In part (c), most candidates failed to understand how to find the second partial derivatives. For instance, the candidates expressed $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x} \times \frac{\partial f}{\partial y}$ instead of writing $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$. So, the candidates ended up with an incorrect answer which was $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$.

 $\frac{\partial^2 f}{\partial x \partial y} = xy \sin^2 xy$. Extract 10.2 shows a sample of one of the incorrect responses from one of the candidates.

Soln 10 $\frac{1-x^2}{1+x^2}$ y = cos a dy = ?àx. $\cos^{-1}(x) = -1$ frm - x2 dy of $1-x^2 = 4x^2 + u dv + v du$ dx $1+x^2$ dx dx50 $= 1 - x^2 \cdot 2x + 1 + x^2 + (-2x)$ $\frac{1+x^2}{1+x^2} = 2x - 2x^3 + 1 + x^2 - 2x$ dx $dy_{=}(3x-2x^{3}+1+x^{2}-2x) \cdot -1$ ᠂᠊ᡘᡶ ١ =-(-~+×+1 dx $\frac{-(1-x^2)}{(1+x^2)}$

Soln bi iX $K = f(0) + hf(0) + h^{2}$ 10)+ 72m $) = \ln(1+\alpha)$ 1+2)=2+2 $\mathbf{\hat{x}} = \mathbf{1}$ $\overline{\mathcal{T}} = (x)$ $\frac{f(x) = l_{1} + h_{1} + 2h^{2} + h^{3}}{2l_{3l}}$ 31 $f(x) = ln 1 + h + 2h^2 + h^3$ San. $C^{}$ f(X,y) = Jin xy $= \partial f \times \partial f$ OF = USinxy $\partial f = \pi \sin x y$ so of = ysinxy x xsinxy . def - CUSSARD = Xysin2xy

Extract 10.2: A sample of incorrect responses to question 10

In Extract 10.2, in part (a), the candidate lacked skills on how to differentiate the inverse of cosine by applying an incorrect formula of quotient rule. While in part (b), the candidate failed to establish Maclaurin's series of logarithmic functions. In part (c), the candidate failed to apply the concept of partial derivative to differentiate the given function.

2.2 142/2 ADVANCED MATHEMATICS 2

2.2.1 Question 1: Probability

This question had three parts, (a), (b) and (c). Part (a) read as follows: The time taken by John to deliver milk to the High Street is normally distributed with mean 12 minutes and standard deviation 2 minutes. Candidates were required to estimate the number of days during the year when he takes longer than 17 minutes if he delivers milk every day (1 year = 365 days). In part (b), the question was written: Suppose that a group of people in a village attending hospital has been categorized according to the incidence of two diseases.

Sex	Malaria	Typhoid
Male	16	12
Female	12	10

Candidates were required to find the probability that a person chosen is a female given that the person is suffering from Malaria. In part (c), they were required to find how many ways can a hand of 4 cards be chosen from an ordinary pack of 52 playing cards?

The analysis of data shows that a total of 13,443(99.96%) candidates attempted the question on which 6,047(45.0%) candidates scored 0 to 5 marks. While 3,266(24.3%) candidates scored 5.5 to 8.5 marks and 4,130(30.7%) candidates scored 9 to 15 marks. Figure 12 presents a summary of candidates' performance in this question.

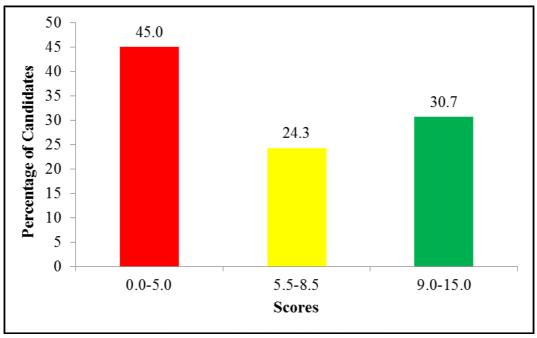
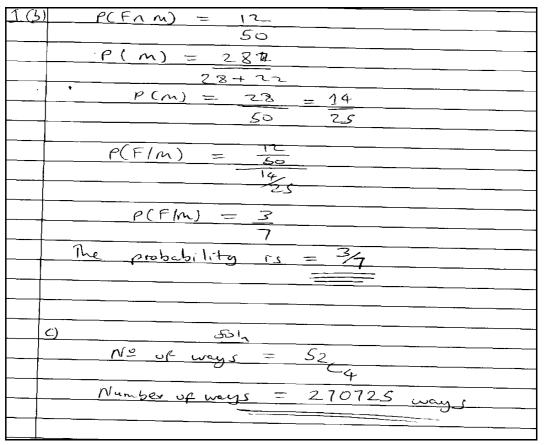


Figure 12: Candidates' Performance in Question 1


Furthermore, the analysis details that the performance of candidates in this question was average since 45 per cent of the candidates scored less than 5.5 marks.

The candidates who attempted this question correctly showed good understanding and skills on probability. In part (a), some candidates who performed well were able to standardize the normal random variable *x* into a *Z* score and obtained *Z* = 2.5 using the formula $Z = \frac{X - \mu}{\delta}$, where $\mu = 12$ and $\delta = 2$, X = 17. Moreover, they were able to use the scientific calculator to obtain p(z > 2.5) = 0.00621. Finally, they calculated the required number of days by multiplying the probability obtained by 365 days in the year, that is number of days = 365(0.00621) = 2 days.

In part (b), the candidates used the correct formula for conditional probability, $P(F/M) = \frac{P(F \cap M)}{P(M)}$ with a correct substitution of $P(F \cap M) = \frac{12}{50}$ and $P(M) = \frac{28}{50}$ which gave the answer $P(F/M) = \frac{3}{7}$. On the other hand, other candidates were able to use an alternative method by identifying the number of sample space n(S) and number of events n(E) with values 28 and 12 respectively. They further used the formula $P(F/M) = \frac{n(E)}{n(S)}$ to obtain $P(F/M) = \frac{3}{7}$. In part (c), the candidates were able to recall and use the correct formula for combination, ${}^{n}C_{r} = \frac{n!}{(n-r)!r!}$ where n = 52 and

r = 4. Then, they obtained ${}^{52}C_4 = 270725$ as the number of ways of choosing a hand of 4 cards from an ordinary pack of 52 playing cards. Extract 11.1 shows one of correct responses from the candidates who attempted this question.

1 e) Soln	
$\frac{mean (M) = 12}{S \cdot O(S) = 2}$	
$\overline{7} = \chi = 1$	
$\frac{z = x - u}{5}$	
2 = 17 - 12 - 2.5	
P(277.5)	
tequited P(Z>Z·S)	
02=2:5	
7253	
Prequired = 6.21×10-3	
Number of Jays = 6.21×10-3 × 365	
= 2:27 3 2 -10:0	
= 2.27 7 2 days	_
. The number of days = 2 days	
b) 501y	—
required P(-	
let M- melaria	
m'- male	_
F - tenplo	
T - Typhid.	_
	_
required P(F/m) = P(Fnm)	
$P(\overline{m})$	

Extract 11.1: A sample of correct responses to question 1

In Extract 11.1, the candidate was well equipped with knowledge and skills of normal random variable, conditional probability and the fundamental principle of counting, which enabled him/her to attempt this question correctly.

Despite the good performance on this question there were some candidates who faced challenges while attempting the question. In part (a), some candidates were able to write $Z = \frac{X - \mu}{\delta}$ correctly but wrongly substituted $\mu = 17$, $\delta = 2$ and X = 12 to obtain p(z > -2.5) instead of p(z > 2.5). Again, it was observed that other candidates substituted $\mu = 12$, $\delta = 2$ and X = 365 which led to p(z > 176.5). It was further observed that a few candidates used the poison distribution formula $p(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$. Then, they substituted $\lambda = 12$ and x = 17 to obtain p(x = 17) = 0.3832471 instead of p(x > 17) = 0.00621. Moreover, it was observed that a few candidates used the variance formula, $Var(x) = Ex^2 - (Ex)^2$ and substituted $\sigma^2 = Var(x) = 2$ to solve the

equation by writing $4=12x^2 - (12x)^2$ which was not the equation as per the correct procedure. It was again noted that some candidates calculated the number of days n using these formulas $\bar{x} = pq$ and $\sigma = npq$, with substitution of $\bar{x} = 12$ $\sigma = 2$ respectively. Then, they solved simultaneously and obtained n=6. Finally, they calculated the number of days by multiplying 17 days by $\frac{1}{6}$ to obtain 2.833 days.

In part (b), some candidates tried to use the technique of the tree diagram but ended up with an incorrect probability of $\frac{3}{11}$ because the tree diagram needed to use the concept of Bayer's theorem. Again, it was noted that a few candidates recalled $P(F/M) = \frac{P(F \cap M)}{P(M)}$ correctly but made mistakes in obtaining the value of $P(F \cap M)$. For example, some wrote $\frac{12}{28}$ instead of $\frac{12}{50}$. Others obtained $P(F \cap M)$ using the formula $P(F \cap M) = P(F) + P(M) - P(F \cup M)$ with $P(F) = \frac{12}{22}$, $P(M) = \frac{28}{50}$ and $P(F \cup M) = \frac{12}{12}$ to get $P(F \cap M) = 0.10545$ instead of $\frac{6}{25}$.

In part (c), a few candidates used inappropriate formulae, for example they calculated the number of ways of choosing 4 cards in the pack of 52 cards using the concept of permutation as ${}^{n}P_{r} = \frac{n!}{(n-r)!}$ where n = 52 r = 4 to obtain 6497400. Also, there were

candidates who wrote n^r where n = 52 and r = 3 to obtain 140608. Other candidates divided 52 by 4. This result was multiplied by four factorials to get 312 ways of choosing a hand of four from a pack of 52 playing cards. Extract 11.2 shows a sample of incorrect responses from one of the candidates who attempted the question.

19	Mago = 12	+
<u> </u>	(tandard deviction = 2	
	film	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	Mocor (A) = Bm = 1× e-1 +1-	<u> </u>
	but x. 12-	
	$Maan (\lambda) = np$ $\lambda = np$	+
	$\lambda = 0.6$	+
	12 = PP	<u> </u>
	Rut	+
	$\frac{d}{Q} = \frac{\ln pq}{\ln pq}$	<u> </u>
	0 - 1 000	<u> </u>
	<u><u>y</u> - grivy -</u>	<u> </u>
	$4 = \Pi P q$ but $\Pi P = \Pi p$	
	4= 12	
	9=1/2	
	3	
	$\frac{P_{1}}{P_{1}} = 1 = \frac{P_{1}}{P_{2}} = \frac{P_{1}}{P_{2}}$	
	P = 1 - V = 2V	
		·
19	-'· P= 24	
	9 = 1/2	
		
•	Since q = no of day he takes longer than A minutes.	ļ
	9 = 1 × 365 days	
	9 = 121 % days	ļ
	12 1 5 vorys	
	101.97	
	.: No of days = 121 3 days	

Ń		
Ь	Consider the tree diagram below. 14/22 Typhoid	
	tops Typhoid MT	
	2/28	
	16/2-3	
	Malanig MM	
		·
	10/02 TyphidFT	
		•
	tende	
- 1		
	10/ 22 MabriaFM	
	122 TRONGTM	
	Thon;	
	P (penake with malane) = FM	
	<u> </u>	
	=> The polability of pende = 3/11	
	with mathin	
10	Pade of and = 52 (n) no of and on hand = 4 (r)	
(C		
	no of and on hand = - (1)	
	- for number of ways.	
	é Dua D	
	$\frac{1}{10000000000000000000000000000000000$	
	(without repetitedon)	
	$n_0 = 0!$	
	(n-r)!	
		·····
· · · · ·	<u> </u>	
	1 Pr => 132,600 ways.	
	npr => 12,600 ways	
	<i>0</i>	

Extract 11.2: A sample of incorrect responses to question 1

In Extract 11.2, part (a), the candidate failed to use the Z score formula to estimate the number of days. While in part (b), the candidate failed to use the formula for conditional probability. Also in part (c), he/she applied permutation instead of using the techniques of combination to solve the problem.

2.2.2 Question 2: Logic

This question consisted of three parts, (a), (b) and (c). In part (a), the candidates were required to write the converse and inverse of the statement "If you score an A grade in Logic test, then I will buy you a new car" in words and symbolic form. Part (b), required the candidates to use the truth table to examine $[(\sim p) \rightarrow (\sim q)] \land (p \rightarrow q)$ is equivalent to $(q \rightarrow p) \land (p \rightarrow q)$. In part (c), they were required to use laws of algebra of propositions to simplify $[p \land (p \lor q)] \lor [q \land (\sim (p \land q))]$.

The data analysis depicts that out of 13,443(99.96%) candidates who answered the question, 12,191(90.7%) candidates scored 9 to 15 marks. While 1,036(7.7%) candidates scored 5.5 to 8.5 marks and 216(1.6%) candidates scored 0 to 5 marks. The summary of the candidates' performance is given in Figure 13.

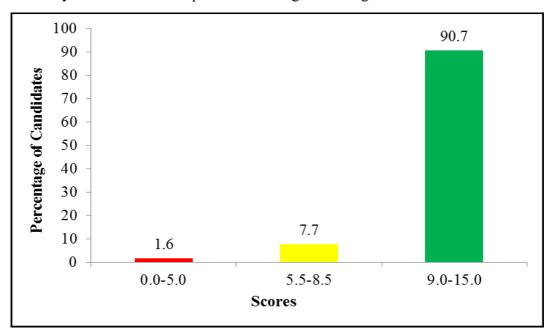


Figure 13: Candidates' Performance in Question 2

The performance of the candidates was good as observed in Figure 13 where 98.4 per cent of the candidates who attempted this question scored 5.5 to 15 marks.

The candidates who attempted this question correctly in part (a) were able to break down the conditional statement into premises and conclusion by letting p "You score an A grade in logic test" and q "I will buy you a new car" respectively. Finally, the candidates wrote the converse into words as "If I buy you a new car then you will score an A grade in logic test.", and in symbolic form is $q \rightarrow p$. Likewise, the inverse was written as "If you do not score an A grade in logic test, then I will not buy you a new car". Thereafter, the candidates wrote it into symbolic form as $\sim q \rightarrow \sim p$.

In part (b), the candidates were able to arrive at the correct answer by following all the necessary steps for filling in the truth table and concluded that the two propositions $[(\sim p) \rightarrow (\sim q)] \land (p \rightarrow q)$ and $(q \rightarrow p) \land (p \rightarrow q)$ are logically equivalent. In part (c), the candidates who attempted it correctly had the knowledge of using laws of algebra of propositions such as distributive, complement, De-Morgan and absorption to simplify the compound statement $[p \land (p \lor q)] \lor [q \land (\sim (p \land q))]$ to $p \lor q$. Extract 12.1 illustrates a correct response from one of the candidates who attempted the question.

2.9>	let, p be you score an A grade in a logic tert
	q be buy you a new car
	converse (q-op): IF I buy you a new car then you will alone
	an A grade h your logic test
	inverse (~p-o-g) = If you do not score an A grade in your
	Logic test then I will not buy you a new
	Car
	(a) (b) L()
6>	Pq~P~q~P-oq P-oq q-op and CAL
	T T F F T T T T
	T_F_F_T_F_F_F
·	FTTEPTTEF
	The last two warmans are equal thus [(-p-p-q)] (p-oq) is
	equivalent to (q-op) ~ (p-oq)

[PA(PVQ)]V[9A(~(PAQ))] given	
[(PVF)/(PVQ)]V [9/ (~(P/Q))] distributive law.	
[PV(FAQ)]V[QA(N(PAQ))] Associative law.	
(PVF) V [9 A (~(PAQ))] Identify law.	
PN [QN(~(PNQ))] Identity law	
PV[9/(~PV~q)] Demorganis law.	
PY[(9,~P)Y(9,~9)] Distributive law.	
 PV I (GA~P) V FJ Complement law.	
Pr (9, Nop) Identity law.	
(PVQ) (PVNP) Distributive law.	
(PV9) AT Complement law.	
PV9 Identity law.	

Extract 12.1: A sample of correct responses to question 2

In Extract 12.1, the candidate was able to write the converse and inverse of a given statement both symbolically and in words. Furthermore, he/she was able to draw the correct truth tables and lastly he/she used laws of algebra of propositions in simplifying the compound statement.

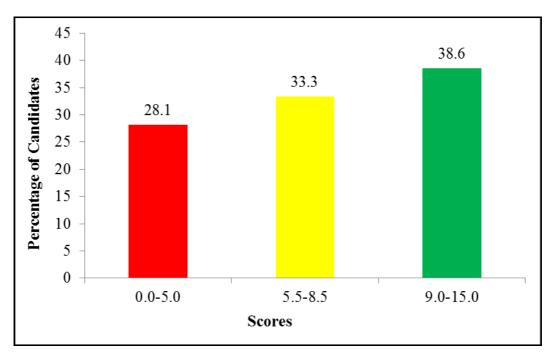
Majority of the candidates scored high marks in this question. This shows that the candidates had adequate knowledge and skills on the concepts of logic. However, there were a few candidates who performed poorly on this question. For instance, in part (a), some were able to write the converse and inverse $q \rightarrow p$ and $\sim q \rightarrow \sim p$ respectively in symbolic form but incorrectly translated into words. For example, the converse into words was written "I will buy you a new car then if you score an A grade in a logic test". Others, wrote "I will buy a new car if you score an A grade in a logic test". On the other side, for the inverse in words, a few of candidates wrote "If you do not score an A grade in a logic test, then I will not buy you a new car". It was again noted that a number of candidates did not start with the word "If" in the beginning of a converse statement. Instead they wrote, "Unless you score an A grade in logic test, then I will not buy you a new car".

In part (b), the majority had no skills for preparing the truth table by using logical connectives. Some of them wrote "implication of F and F is F, F and T is F" which was incorrect. Lastly, in part (c), there were candidates who simplified $[p \land (p \lor q)] \lor [q \land (\sim (p \land q))]$ by using a set and logical symbols interchangeably. For

example, they wrote $p \lor \sim p = \mu$. Also, there were candidates who introduced the identity $q \lor F$ instead of doing the distribution of $q \land (\sim p \lor \sim q)$ that led to incorrect steps. It was further seen in the responses that some faced difficulties in simplifying $p \land (p \lor q)$ and wrote $(p \lor q) \land (p \lor q)$. Extract 12.2 shows an incorrect response from one of the candidates.

- . .	a. let P=Score an A grade In a logiz test.
	a. let p=Score an A grade In a logiz test. 2= Buy you a new Car.
	ten: Sentence ! P -> 2
	Converse 9>P. - [will buy you a new car if you score an A grade in loge test.
	<u>9</u> → > P.
	- I will buy you a new car if you score
	- in A grage in logic for
	nverse. ~p>~q
	~p>~q
	- Unless you score an A grade lu a logiz test, than I will not buy you a new
9 0	
	$(q - rp) \wedge (p - rq)$
	$\frac{\text{Soln}}{\text{for}} = \left[(-p) \rightarrow (-q) \right] \wedge (p \rightarrow q)$
	$\frac{1}{10} + \frac{1}{10} $
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	T T F F F F F
	T F F T F
	FTTFT CFFF
	AGiain
	$for \qquad (q-rp) \land (p-rq)$
	P q q to Cb and
	T F F T F
	F T T F F
	F F F F
	The statement [("P)-r(ng)]A(P-r) is equivalent to the
	Stitement (9-+P) ~ (P-+q) since both are contradi
	ction statement or not taugtology statement.
	· ·

(PV9 9. (~/PA 9 SIC. 2 Iven norgan hate Identi ł


Extract 12.2: A sample of incorrect responses to question 2

In Extract 12.2, in part (a), the candidate was unable to write the converse and inverse of the conditional statement correctly. In part (b), the candidate failed to provide the correct truth values and in part (c), the candidate was not able to use correctly laws of algebra of propositions to simplify logical compound statements.

2.2.3 Question 3: Vectors

The question comprised three parts (a), (b) and (c). In part (a), the candidates were required to find the work done by force $\vec{F} = \vec{i} + 2\vec{j} + \vec{k}$ moving an object at a distance of 7m in the direction of the vector $\vec{r} = 3\vec{i} + 2\vec{j} + 4\vec{k}$. Part (b), required the candidates to find a unit vector parallel to the displacement vector \vec{PQ} if P and Q are points P(3, -4, 6) and Q(1, -3, 8) respectively. In part (c), the candidates were given the position vectors of points A and B as \underline{a} and \underline{b} respectively. If point C divides \vec{AB} internally in the ratio of 2:1, D divides \vec{AB} externally in the ratio of 1:4 and E divides \vec{CD} internally in the ratio of 2:1. The candidates were required to find the position vectors of C, D and E in terms of \underline{a} and \underline{b} .

The data analysis shows that 5,182 (38.6%) candidates out of 13,443 (96.96%) who attempted the question scored 9 to 15 marks. A total of 4,479 (33.3%) candidates scored 5.5 to 8.5 marks and 3,782 (28.1%) candidates scored 0 to 5 marks. Figure 14

shows the percentage of candidates who obtained weak, average and good performance.

Figure 14: Candidates' Performance in Question 3

Figure 14 shows that most candidates (71.9%) scored from 5.5 to 15.0 marks, indicating that the candidates' performance in this question was good.

The candidates who attempted this question correctly were able to follow all the necessary steps of computation in each part. In part (a), they were able to find the displacement in the direction of the vector r = 3i + 2j + 4k using the formula

$$\underline{d} = \frac{\underline{r}}{|\underline{r}|} \times 7$$
 to obtain $\underline{d} = \frac{21\underline{i} + 14\underline{j} + 28\underline{k}}{\sqrt{29}}$ correctly and finally, they were able to

calculate the work done $W = \underline{F}.\underline{d}$ and obtained $\frac{77}{\sqrt{29}}$ or $\frac{77\sqrt{29}}{29}$ as a correct answer. In part (b), candidates were able to find the displacement vector \overrightarrow{PQ} by subtracting position vector P from position vector Q and obtained $\overrightarrow{PQ} = -2\underline{i} + \underline{j} + 2\underline{k}$. Finally, they computed the unit vector \overrightarrow{PQ} using $\frac{\overrightarrow{PQ}}{|PQ|}$ to obtain $\frac{1}{3}(-2\underline{i} + \underline{j} + 2\underline{k})$. In part (c), they were able to apply both internal and external ratio theorem step by step to obtain the position vectors $\underline{c} = \frac{1}{3}(\underline{a} + 2\underline{b})$, $\underline{d} = \frac{1}{3}(4\underline{a} - \underline{b})$ and $\underline{e} = \frac{1}{3}(3\underline{d} + \underline{c})$. Finally, they used the obtained position vectors \underline{c} and \underline{d} into $\underline{e} = \frac{1}{3}(3\underline{d} + \underline{c})$ in order to get vector \underline{e} in terms of \underline{a} and \underline{b} . Then, they simplified to obtain $\underline{e} = \underline{a}$. Extract 3.1 illustrates the candidate who did this question correctly.

3a ·	Workdone W = F.r.
	$\underline{F} = \underline{i} + 2\underline{j} + \underline{k}$
	$\frac{y}{1} = \frac{7(3j+2j+4k)}{1(3)^2 + (2)^2 + (4)^{3}}$
	$\frac{\Gamma}{\sqrt{29}} = \frac{21}{\sqrt{29}} + \frac{14}{\sqrt{29}} + \frac{28k}{\sqrt{29}}$
	$\sqrt{29}$ $\sqrt{29}$ $\sqrt{29}$ $\sqrt{29}$
	$W = (\underline{i} + 2\underline{j} + \underline{k}) \cdot (\underline{21} \underline{i} + \underline{14j} + \underline{23k}) $ $(\overline{J2q^{1}} \overline{J2q^{2}} \overline{J2q^{2}})$
	129 Jzg Jzg /
	$W = 21 + 28 / 329 \overline{J} = 129 $
	J291 J29 177
{	$W = \frac{97}{529} J$
	W 2 14.2935 Joule
	Workdone is 14.2985 Joule.
<u>b</u> .	$\overrightarrow{PQ} = \begin{pmatrix} 1 \\ -3 \\ -3 \\ -4 \\ -4 \\ -4 \\ -4 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$
	$-\frac{-3}{3}$ $-\frac{-4}{6}$ 1
	$\frac{1}{10^{12} + (1)^{12} + 2k}$
	$\frac{10}{10} = -2 c_1 + 1 c_2 + 2 c_1$
	$\frac{\hat{r}_{0}}{3} = \frac{-2}{3} \frac{1}{1} + \frac{1}{1} \frac{1}{1} + \frac{2}{1} \frac{1}{1} \frac{1}{1} + \frac{2}{1} \frac{1}{1} \frac{1}$
ł	

•	· ·	
2	(c)	
<u> </u>		
	A 2 C 1. B	
	a	
	4	
	ABD	
	<u>a</u> 5	
	4	
	A	
	A	
	(b	_
	2 - 1	
	internal division cosé I	
	P=(mb, ng) C divides AB internally	
i	(mtn mtn) m:n 2:1,	
	$C = \left(2\frac{b}{2} + 2\right)$	
	. vector C is 2 b + 1 a	
¥.	3 3	

3 (c) case \overline{B} Point D divides AB extrinally $m:n = 1:4$ m=1, n=4 $\underline{D} = Q = (\underline{mb} - \underline{na})$ $\underline{D} = \underline{m} (\underline{b} - \underline{4a})$ $\underline{D} = (\underline{-1b} + 4\underline{a})$ $\underline{D} = (-\underline{1b} + 4\underline{a})$ $\underline{D} = (-\underline{1b} + 4\underline{a})$ $\underline{C} = (\underline{nd} + \underline{na})$ $\underline{C} = \underline{md} + \underline{na}$ $\underline{E} = (\underline{md} + \underline{na})$ $\underline{E} = (\underline{md} + \underline{na})$
$\frac{1}{2} = q = \left(\frac{m2}{m} - n\frac{4}{m}\right)$ $\frac{1}{m} = \frac{m}{m} \left(\frac{1}{2} - \frac{4}{4}\right)$ $\frac{1}{2} = \frac{m}{1 - 4} \left(\frac{1 - 4}{1 - 4}\right)$ $\frac{1}{2} = \left(\frac{-1}{2} + \frac{4}{4}\right)$ $\frac{1}{3} = \frac{-1}{3} + \frac{4}{4} + \frac{4}{4}$ $\frac{3}{3} = \frac{3}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = $
$\frac{1}{2} = q = \left(\frac{m2}{m} - n\frac{4}{m}\right)$ $\frac{1}{m} = \frac{m}{m} \left(\frac{1}{2} - \frac{4}{4}\right)$ $\frac{1}{2} = \frac{m}{1 - 4} \left(\frac{1 - 4}{1 - 4}\right)$ $\frac{1}{2} = \left(\frac{-1}{2} + \frac{4}{4}\right)$ $\frac{1}{3} = \frac{-1}{3} + \frac{4}{4} + \frac{4}{4}$ $\frac{3}{3} = \frac{3}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$ $\frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = $
$\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{2} = \frac{-15}{3} + \frac{44}{3}$ $\frac{1}{3} = \frac{-15}{3} + \frac{1}{3} + \frac{1}{3}$
$\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{2} = \frac{-15}{3} + \frac{44}{3}$ $\frac{1}{3} = \frac{-15}{3} + \frac{1}{3} + \frac{1}{3}$
$\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{1-4} = \frac{44}{1-4}$ $\frac{D}{2} = \frac{-15}{3} + \frac{44}{3}$ $\frac{1}{3} = \frac{-15}{3} + \frac{1}{3} + \frac{1}{3}$
$\frac{2}{3} \frac{1}{3}$ $\frac{1}{5} \frac{1}{5} $
$\frac{2}{3} \frac{1}{3}$ $\frac{1}{5} \frac{1}{5} $
$\frac{2}{3} \frac{1}{3}$ $\frac{1}{5} \frac{1}{5} $
$\frac{2}{3} \frac{1}{3}$ $\frac{1}{5} \frac{1}{5} $
$\frac{\alpha_{\text{re}}}{\text{E divides CD internally } m:n=2:1}$
E divides CD internally m:n=2:1
E divides CD internally m:n=2:1
E = (m d + n c)
m + n + n / m + n /
$E = (2)^{-1} + 4, a$ $(2)^{-1} + 4, a$
$E = \left(\begin{array}{c} 2\left(\frac{-1}{3}\frac{b}{2} + \frac{4}{3}\frac{a}{2}\right) + 1\left(\frac{2}{3}\frac{b}{2} + \frac{1}{3}\frac{a}{2}\right) \\ 2 + 1 \end{array}\right)$
$\frac{1}{2} = \frac{1}{3} \begin{bmatrix} -\frac{3}{2} & \frac{1}{2} + \frac{8}{2} & \frac{1}{3} \\ -\frac{3}{3} & \frac{1}{3} \end{bmatrix} + \frac{1}{3} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \\ -\frac{3}{3} & \frac{1}{3} \end{bmatrix}$
$\frac{E = -25 + 59 + 25 + 19}{9 - 9 - 9}$
9999
$E = 0 \underline{b} + \underline{a}$ $\therefore \text{ vector } F = 0 \underline{b} + \underline{a} \text{or } E = \underline{a}$
$\therefore \text{ vector } F = O \underline{b} + \underline{a} \text{or } \underline{F} = \underline{a}$

Extract 13.1: A sample of correct responses to question 3

In Extract 13.1, the candidate had enough skills that enabled him/her to calculate the work done properly, unit vector and applied the ratio theorem to get the required position vectors.

Apart from good performance on this question, there were candidates who did not do this question well. In part (a), some candidates multiplied the distance and direction

vectors as 7(3i+2j+4k) and then they dotted it to the force i+2j+k to obtain 77 Joules contrary to $\frac{77}{\sqrt{29}}$ Joules. Again, it was noted that others calculated directly the work done by multiplying force by distance, that is work done = $(i + 2j + k) \times 7$. It was others calculated the unit further noted that vector of a force as $\hat{F} = \frac{i+2j+k}{\sqrt{1^2+2^2+1^2}} = \frac{i+2j+k}{\sqrt{6}}$ and finally dotted the result with the product of distance and directional vector to obtain $\frac{i+2j+k}{\sqrt{6}}$.7(3i+2j+4k). Furthermore, it was observed candidates who followed all steps correctly obtained that few a $F = (1+2i+k) \left(\frac{21i+14j+28k}{\sqrt{29}} \right)$ but were not able to realize that the dot product results into scalar, then left the answer as $\left(\frac{21i+28j+28k}{\sqrt{29}}\right)$.

Not only that but also in part (b), some candidates just crossed vectors P and Q, that is $P \times Q = 14i + 18j - 5k$. Then, they calculated its unit vector as $\overline{PQ} = \frac{14i + 18j - 5k}{\sqrt{545}}$ which was completely incorrect. Again, it was observed that some candidates lacked knowledge of integer operation. For example, they wrote displacement \overline{PQ} as (1-3)i + (-3-4)j + (8-6)k instead of (1-3)i + (-3-4)j + (8-6)k that led to incorrect unit vector $\frac{-2i - 7j + 2k}{\sqrt{65}}$. Further observations showed that some of the candidates were using the concept of projection on vectors, that is, $\operatorname{Proj} = \frac{(3i - 4j + 6k) \cdot (i - 3j + 8k)}{\sqrt{1^2 + 3^2 + 8^2}}$ and treated it as the unit vector.

In part (c), a few candidates found position vectors for \underline{c} and \underline{d} correctly as $\underline{c} = \frac{1}{3}(\underline{a} + 2\underline{b})$ and $\underline{d} = \frac{1}{3}(4\underline{a} - \underline{b})$. However, they did not realize that vector E divides C and D externally, then they wrote $e = \frac{2b+a}{3}$ instead of $e = \frac{2d+c}{3}$. It was further noted that other candidates reversed the position vectors to be applied in the ratio theorem as

 $\underline{c} = \frac{ma+nb}{m+n}$ and then they substituted the ratio m: n = 2:1 to obtain $\underline{c} = \frac{2a+b}{3}$. Extract 13.2 shows a sample of incorrect responses from one of the candidates.

Зa = Force X Sistence +21+K $= F_{X}$ =(1 t21 +K) 7 = 71 +141 + 7K = 71 +141 + 7K Jorhdone is Fit14 + 7k. 36 -4,G) 3. ar - Vector PQ purollel to a make on angle of O for to be b verter No N = A.b Call Jallb - 0. 6 191 ai, -j-ak (a 40 @1= (Qi-j-QK (21-j-2K q 9 36 Ъ Qi--ak છ Ξ 1 the displacement PQ is k The vector a -ak 20 -1

30 tran Vector 2WISION Lac ofas K Ч Z) Q MAD $M: \rho =$ a Ø, alt this tak +1,1 <u> + (263+25) K</u> taz) pos tion rector of (26, +9,)it(26, 10,) + (263+03) k 30 division ø M-D -0 M Rut 1:4 MIP = bilt .4 faitaitask -3 (-4a) + (b3-4a3)K) 16,40, 1 (Cb,-4a)i + (b-4a) i - (b-4a) Josi Fron ver 15 lerpa Fes wisioi m D m + n170 R M:0=2:1 (a,itazitask + $ab_1 + a_1 \chi$ +(2bit a)) + (Rb3 +ax 1 vector , , The vector of Ŀ 15 posi Fion) (+ (2br + 90) j + 1262+03 RL taHence shown

Extract 13.2: A sample of incorrect responses to question 3

In Extract 13.2, the candidate failed to calculate the work done and the unit vector in the direction of \overrightarrow{PQ} and also failed to apply both external and internal ratio theorems.

2.2.4 Question 4: Complex Numbers

This question had four parts, (a), (b), (c) and (d). In part (a), the candidates were required to express $\sqrt{1+i}$ in polar form. In part (b), they were required to use the results of part (a) to show that $\tan \frac{\pi}{8} = \sqrt{2} - 1$. In part (c), they were required to prove

that
$$Arg\left(\frac{z_1}{z_2}\right) = Arg\left(z_1\right) - Arg\left(z_2\right)$$
 if $z_1 = r_1\left(\cos\theta_1 + i\sin\theta_1\right)$ and

 $z_2 = r_2 \left(\cos \theta_2 + i \sin \theta_2 \right)$. In part (d), the candidates were given the complex numbers $z_1 = \frac{c}{1+i}$ and $z_2 = \frac{d}{1+2i}$ where $c, d \in \mathbb{R}$. Then, they were asked to find the values of c and d such that $z_1 + z_2 = 1$.

The analysis shows that 36.4 per cent of the candidates who attempted this question scored from 0 to 5 marks, 41.9 per cent scored from 5.5 to 8.5 marks and 21.7 per cent scored from 9 to 15 marks. Generally, the candidates' performance in this question was good as 63.6 per cent of the candidates got more than 5 marks. Figure 15 illustrates the candidates' performance in this question.

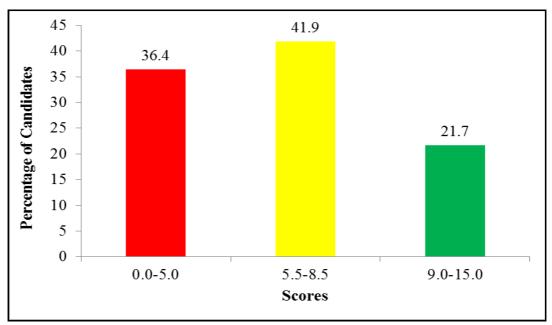


Figure 15: Candidates' Performance in Question 4

Further, the analysis revealed that those who had high performance had good understanding of the topic and approached the question according to what was asked. In

part (a), the candidates were able to express the complex number 1+i in polar form and then used De-Moivre's theorem to obtain $\sqrt{1+i} = (\sqrt{2})^{\frac{1}{2}} \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right)$. In part (b), the candidates managed to use the result of part (a) to show that $\tan \frac{\pi}{8} = \sqrt{2} - 1$. They squared both sides of the equation $\sqrt{1+i} = (\sqrt{2})^{\frac{1}{2}} \left(\cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \right)$ to obtain $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i = \cos \frac{\pi}{8} + i \sin \frac{\pi}{8}$ and from this they deduced that $\tan \left(\frac{\pi}{4}\right) = 1$. They used the identity $\tan \theta = \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 - \tan^2 \left(\frac{\theta}{2}\right)}$ to obtain $\tan \left(\frac{\pi}{4}\right) = \frac{2 \tan \left(\frac{\pi}{8}\right)}{1 - \tan^2 \left(\frac{\pi}{8}\right)}$. Then, they formulated the quadratic equation in $\tan \left(\frac{\pi}{8}\right)$, that is, $\tan^2 \left(\frac{\pi}{8}\right) + 2 \tan \left(\frac{\pi}{8}\right) - 1 = 0$, and on solving it, they obtained $\tan \left(\frac{\pi}{8}\right) = \sqrt{2} - 1$.

In part (c), the candidates proved $Arg\left(\frac{z_1}{z_2}\right) = Arg(z_1) - Arg(z_2)$ using the concept of operation of complex numbers and the knowledge of the compound angle formulae. First, they computed $\frac{z_1}{z_2}$ from the given expressions $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$ then obtained $\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2))$. Thus, $Arg\left(\frac{z_1}{z_2}\right) = \theta_1 - \theta_2$ and from this they deduced that $Arg\left(\frac{z_1}{z_2}\right) = Arg(z_1) - Arg(z_2)$. In part (d), the candidates applied the concept of operation on the equation $z_1 + z_2 = 1$ to obtain $\frac{c(1+i)}{2} + \frac{d(1-2i)}{5} = 1$. From this equation, they formulated two simultaneous equations in *c* and *d*, 5c + 2d = 10 and 5c + 4d = 0 by comparing real and imaginary parts. On solving the equations, they obtained the required values of c = 4 and d = -5. Extract 14.1 shows a sample of responses from one of the candidates who correctly answered this question.

()4. Q. let & .
$\begin{array}{c} 04^{\circ} & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & $
$\frac{\alpha - \tau}{\tau}$
$r = \sqrt{1^2 + 1^2}$
(= <u>v</u> 2.
$Cry(c) = 4m^{-1}(\frac{y}{2})$
$= 4m^{-1}(1/2)$
- dun (1)
0-2 T/4
$\frac{1}{(105 \text{T}/\text{L} + 15 \text{m}^{\text{T}/\text{L}})} \frac{1}{(105 \text{T}/\text{L} + 15 \text{m}^{\text{T}/\text{L}})} \frac{1}{(105 \text{T}/\text{L} + 15 \text{m}^{\text{T}/\text{L}})^{\frac{1}{10}}}$
$\frac{a \cdot 2(\sqrt{2})^{22} (\log \sqrt{44} + i \ln \sqrt{46})^{12}}{a \cdot 2^{1/4} (\log \sqrt{48} + i \cdot \ln \sqrt{46})^{12}}$
$\frac{U_2}{Smu} = \frac{U_1}{(0)} \frac{1}{78} + \frac{U_1}{(0)} \frac{1}{78} + \frac{U_1}{(0)} \frac{1}{78}$
Now $\alpha = 2^{1} (65^{-11} (c + 1) m H_{4})$
$\frac{1}{2} \sqrt{1+i} = \frac{2^{1}}{4} \left((0) \frac{11}{8} + i \sin \frac{11}{8} \right)$ $\frac{1}{2} \sqrt{1+i} = \frac{2^{1}}{4} \left((0) \frac{11}{8} + i \sin \frac{11}{8} \right)$
-1+1 = 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
6. Required to show ten P/e: VT-1
flom.
1+1 = VZ (0) 114 + (VZ 5m 74)i
1 = JZlos 4/4 On comparing red and Magindry Patr.
1 ~ V? Jon M4.
Divide them
$4an \eta_{L} = 1$
From tan My 2 2 ton 11 0 dince ton 20 = Hun Q
1 - tuning 1 - tuning
but tun 11/4 21.
2 ton 11/2 = 1 - tan? 11/2
ton 1 11/8 + 2 dan 11/8 - 1 - 0

	6 ten from Equation	
	az1 b=2, (=-1.	
	From \$60 \$7/8= -6 \$ 507-44L	
	$\frac{7c}{16-72\pm\sqrt{2^2+4}}$	
·		
	$\frac{2}{4cn^{11/8} = -2 \pm \sqrt{8^{11}}}$	
	$t_{cn} t_{s} = -2 \pm 18'$	
- i	$\frac{2}{d\alpha \eta_{g}} = -2 \pm 2\sqrt{2}$	
	$\frac{d\alpha}{2} = -2 \pm 2\sqrt{2}$	
	$\frac{1}{1}$	
-	$\frac{\Re(mode - Ue part \cdot (negative part))}{4an \frac{\pi}{2} = -1 + \sqrt{2}.$	
1	-' tan "14 = NZ - L	
i	Nerve shown	
	O' Gura.	{
<u> </u>		
	$\overline{f_1} = f_1(los 0_1 + i lm 0_1)$	
	$7_{2} = 1_{2} (los 0_{2} + i sm 0_{2})$	
	Regional to prove that	
	requirer 10 prove that	
	$\frac{\alpha_{19}(\overline{z}_1)}{(\overline{z}_1)} = \alpha_{19}(\overline{z}_1) - \alpha_{19}(\overline{z}_2).$	
	Concrete Coll sale. 21	
	$\frac{z_{1/2}}{z_1} = \frac{1}{12} \frac$	
~	$\underline{ } 12 (11 (01 02 12 02 02 02 02 02 $	
	$- \frac{Z_1}{Z_1} + \frac{Y_1}{Z_1} + \frac{Y_2}{Z_2} $	ļ
	$\frac{Z_{l}}{Z_{L}} = \frac{Y_{l}}{Y_{2}} \left(\left(o_{1} \left(o_{1} - o_{1} \right) + i \right) \right)$	
	$\frac{\alpha \alpha}{2} \left(\frac{z_1}{2} \right) = 0_1 - 0_2.$	
		
	from $\frac{1}{2}$, $\frac{1}{2}$ lillos 0 + i smoll	
	$c_{iq}(z_i) = O_i$	

	6 ton faschon
	azl bz2, (z-1.
	From ten 170= -67 52-421
	<u>7a</u>
	$\frac{2c}{4cn \pi/s = -2 \pm \sqrt{2^2 + 4}}$
	2
	$\frac{2}{4 \cos \pi / 2} = -2 \pm \sqrt{2}$
	2
	$dan \eta_{g} = -2 \pm 2\sqrt{2}$
	$\frac{2}{\tan \pi/2} = -1 \pm \sqrt{2}.$
	(genore -ve part (negative part)
	$\frac{1}{\sqrt{2}} = -1 + \sqrt{2}.$
	$\frac{1}{16} \tan \frac{11}{16} = \sqrt{2} - 1$
	Nence shown.
	O hula
	$\overline{z}_{1} = f_{1}(z_{0}, z_{1} + i \sin \theta_{1})$
	$\overline{7}_{7} = f_{1} \left(f_{01} O_{7} + f_{1} S_{12} O_{2} \right)$
_	Requiring to prove that
	$\frac{\alpha_{rg}\left(\frac{\gamma_{1}}{2}\right)}{\left(\frac{\gamma_{1}}{2}\right)} = \frac{\alpha_{rg}(\gamma_{1}) - \alpha_{rg}(\gamma_{2})}{\left(\frac{\gamma_{1}}{2}\right)}$
	Concrete lott sale. 21
	$z_{1/2}$ I los Q + lim 01
L	$\frac{z_{1/2}}{z_1} = \frac{1}{12} \frac$
L	$\frac{z_{l}}{z_{l}} = \frac{r_{l}}{r_{2}} \left(\left(o_{1} \left(o_{1} - o_{1} \right) + i \right) \right)$
	$\frac{\alpha \alpha}{21} \left(\frac{1}{21} \right) = 0_1 - 0_2.$
	(-22)
	from $z_1 = 1$, $l(o_1 a_1 + i fm o_1)$
	$c.q(z_i) = 0,$
-04-	$\bigcirc Also = r = r (los or + ism or).$
	arg(3z) = 0z
	$G_{1}(x_{1}) - a_{1}(x_{2}) - O_{1} - O_{2}$
	Since $Gra(z_1) = arg(z_1) = arg(z_1) = 0_1 - 0_1$
	Klenu fisled.

Or Guess. In a c and h = d	
1+i <u>1+2i</u>	
71+72=1.	
<u><u> </u></u>	
Lai 147i	
((1+i) + d(1+i) = 1.	
(1+i) (L+20)	
(+2ci + d+ di 2 (4i) (41i)	
$(+d + (2(+d))^{2} = 1 + 2(+1)^{2}$	
((+d) + (2c+d)i - 1 + 2i+i - 2	
((+d) + ((+d)) = -1 + 3)	
On comparing (led and emigrary parts.	
(+ d c -1	
2(-ed = 3	
Joing the equations (multinovily.	
c=4, d=5	
1: C = 4 and d = 5	

Extract 14.1: A sample of correct responses to question 4

In Extract 14.1, the candidate had enough knowledge and skills on the topic about complex numbers which made him/her follow all the necessary steps in answering each part of the question correctly.

On the other hand, the analysis shows that there were candidates who performed this question poorly due to different challenges they faced. In part (a), some candidates confused polar form with polynomial form. They expressed $\sqrt{1+i}$ in the form x+iy by setting $\sqrt{1+i} = x+iy$. After solving for x and y, they wrote $\sqrt{1+i} = \pm \left(\frac{\sqrt{1+\sqrt{2}}}{2} + \frac{\sqrt{2}}{2\sqrt{1+\sqrt{2}}}i\right)$. Others wrote $\cos \theta + i \sin \theta = \sqrt{1+i}$ and compared

real and imaginary parts, which was still a wrong approach to this question. There were other candidates who misinterpreted the question. They applied De-Moivre's theorem to express $(x+i)^2$ in polar form instead of $\sqrt{1+i}$. Also, there were some candidates who applied De-Moivre's theorem to calculate the square roots of (1+i) instead expressing $\sqrt{1+i}$ in its polar form. They wrote

$$\sqrt{1+i} = \left(\sqrt{2}\right)^{\frac{1}{2}} \left(\cos\left(\frac{\frac{\pi}{4} + 2\pi n}{2}\right) + i\sin\left(\frac{\frac{\pi}{4} + 2\pi n}{2}\right) \right) \text{ and on setting } n = 0 \text{ and } n = 1. \text{ They}$$

obtained $\sqrt{1+i} = \left(\sqrt{2}\right)^{\frac{1}{2}} \left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right), \left(\sqrt{2}\right)^{\frac{1}{2}} \left(\cos\frac{9\pi}{8} + i\sin\frac{9\pi}{8}\right)$. In part (b), some candidates failed to separate real and imaginary parts from the equation $\sqrt{1+i} = \left(\sqrt{2}\right)^{\frac{1}{2}} \left(\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}\right)$, which is the technique they could use to deduce the values of $\cos\frac{\pi}{4}$ and $\sin\frac{\pi}{4}$ then $\tan\frac{\pi}{8}$. They expressed $\cos\frac{\pi}{4}$ and $\sin\frac{\pi}{4}$ the subjects to obtain $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{1+i} - i\left(\sqrt{2}\right)^{\frac{1}{2}} \sin\left(\frac{\pi}{4}\right)}{\left(\sqrt{2}\right)^{\frac{1}{2}}}$ and $\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{1+i} - \left(\sqrt{2}\right)^{\frac{1}{2}} \cos\left(\frac{\pi}{4}\right)}{i\left(\sqrt{2}\right)^{\frac{1}{2}}}$. From

these equations, they deduced that $\tan\left(\frac{\pi}{4}\right) = \frac{\left(\sqrt{1+i} - \left(\sqrt{2}\right)^{\frac{1}{2}} \cos\left(\frac{\pi}{4}\right)\right) \left(\sqrt{2}\right)^{\frac{1}{2}}}{\left(\sqrt{2}\right)^{\frac{1}{2}} i \left(\sqrt{1+i} - i \left(\sqrt{2}\right)^{\frac{1}{2}} \sin\left(\frac{\pi}{4}\right)\right)}$ which was

not correct final answer.

In part (c), the candidates applied a wrong approach in trying to prove the given statement. They expressed the right hand side of the statement as
$$\arg(z_1) - \arg(z_2) = \tan^{-1}\left(\frac{r_1 \sin \theta_1}{r_1 \cos \theta_1}\right) - \tan^{-1}\left(\frac{r_2 \sin \theta_2}{r_2 \cos \theta_2}\right) = \tan^{-1}\left(\tan \theta_1 - \tan \theta_2\right)$$
. This was

not only a wrong approach but also an incorrect concept of inverse of trigonometric functions. Furthermore, there were candidates who failed to write the correct expression for argument and modulus for a complex number. They wrote Argument $(r) = \sqrt{x^2 - y^2}$ and $r = \left(\frac{\cos\theta}{z} + \frac{i\sin\theta}{z}\right)$.

In part (d), the candidates failed to apply the basic operation of complex numbers. They expressed z_1 and z_2 in polar form and finally they wrote $z_1 + z_2 = \frac{c}{\sqrt{2}(\cos 45^\circ + i \sin 45^\circ)} + \frac{d}{\sqrt{2}(\cos 63.43^\circ + i \sin 63.43^\circ)} = 1$. Others did a wrong

substitution of z_1 and z_2 into $z_1 + z_2 = 1$ to obtain $c + ci + d + \frac{di}{2} = 1 + 0i$. This led to wrong answers of c and d as -1 and 2 respectively. Futhermore, some candidates obtained the equation c(1+2i)+d(1+i)=(1+i)(1+2i) and failed to make a correct comparison. They wrote c(1+2i)=(1+i)(1+2i) and d(1+i)=(1+i)(1+2i). Extract 14.2 provides a sample of responses from one of the candidates who used wrong concepts in solving the question.

· · · ·		
4@	507-	
4(2)		<u>+</u>
	Given	·
	$\sqrt{1+l}$	
	Required to express into polar form	
	Required to express into polar form. Let VIII be Z.	
	$Z = \sqrt{1+i}$	
	fum	<u></u>
	7 - (10 + i) (10 + i)	<u> </u>
	$\frac{Z}{Z} = C_{0,j} O + i \sin O'_{2}$	+
	$\frac{((1+i))^{2} - (C_{of} O + i sin O)^{2}}{1+i} = (C_{of} O + i sin O)^{2}$	
	$\underline{1+\iota} = (C_{01}O + \iota (I_{1}NO))$	
	$4 + i = (C_{ij} O + i fin \Theta) (C_{ij} O + i fin \Theta)$	<u> </u>
	$1+i=(\cos^2\theta+i\sin\theta\cos\theta+i\sin\theta+i\theta)$	
	$1+i = C_{01}^{2}O + 2i \sin \Theta C_{01}O + i^{2} \sin^{2}O^{-1}$	
	1+i= Cus20+2isin OCus0-sm20	1
	1+i = Cus20-Jin20+DisinoCusO:	
	New comparing the terms	
	Cui 20 - sin 10 = 1 0	
	$2i \sin \Theta (\omega i \Theta = i (i))$	
	$2 \sin \Theta \cos \Theta = 2 \overline{\Theta}$	
├ <u>├</u> -	$\frac{1}{2} \frac{1}{14} $	
	Putyeqn (i) into eqn D Cos20-Sin20 = 2 (in OCAD	
	$\frac{1}{10000000000000000000000000000000000$	
	$\cos^2\theta - \sin^2\theta - 2\sin^2\theta \cos^2\theta = 0$	
		ł.————
$\overline{(C)}$	Solo	
	$f_{-i} = 7 - r \left(\left(os \Theta + i sin \Theta \right) \right)$	
	$\frac{G_{\text{iven}}}{Z_2} = r_1 \left(\cos \Theta + i \sin \Theta_1 \right)$ $\frac{Z_2}{Z_2} = r_2 \left(\cos \Theta + i \sin \Theta_2 \right)$	
	$2_2 = F_1 (L_0) G_1 + L_2 = 2/$	
	Required to prove that:	+
	Arg (2,) = Arg (2,) - mg (2).	
	Required to prove that Arg(Z,) = Arg(Z,) - Arg(Z,). Arg(Z,)	\
	from the gues data, asure; Z1 = r; (Cu; O; + iSin O;)	
	7 m (Cup tiling)	
	$Z_2 = r_1 \left((\omega_1 O_2 + \tilde{c} J h O_2) \right)$	
ļ		l

4(c) But form,

$$Z = r' (cos \Theta + i \sin \Theta)$$
Arquinent (r) = $\sqrt{x^{2+}} y^{n^{2}}$

$$Y = (Cas \Theta + i \sin \Theta)$$

$$Z = Z^{2}$$

$$Y = \frac{1}{2} Cos^{2\Theta} + i^{2} \sin^{2\Theta}$$

$$Z^{2} = Z^{2}$$

$$Y = \frac{1}{2} Cos^{2\Theta} - \sin^{2\Theta}$$

$$Z^{2} = Z^{2}$$

$$y_{ut} = Cos^{2\Theta} - \sin^{2\Theta} = 1$$

$$Now$$

$$Y = Arq(Z)$$

$$Q = \frac{1}{2} Cos^{2\Theta} + i \sin \Theta$$

$$Z_{1} = Cos \Theta_{1} - i \sin \Theta$$

$$Z_{2} = Cos \Theta_{2} + i \sin \Theta$$

$$Z_{2} = Cos \Theta_{2} + i \sin \Theta$$

$$Z_{3} = Arq(Z_{3}) - Argorn(Z_{3})$$

$$\frac{1}{2} = \frac{1}{2} Arg(Z_{3}) - Arg(Z_{3})$$

$$\frac{1}{2} = Arg(Z_{3}) - Arg(Z_{3})$$

$$\frac{1}{2} = Arg(Z_{3}) - Arg(Z_{3})$$

$$\frac{1}{2} = Arg(Z_{3}) - Arg(Z_{3})$$

Extract 14.2: A sample of incorrect responses to question 4(a) and 4(c)

In Exact 14.2, the candidate failed to change the given expression into polar form in part (a) and also in part (c), the candidate failed to prove the argument of the ratio of complex number being equal to the difference of argument of the ratios.

2.2.5 Question 5: Trigonometry

The question consisted of parts (a), (b), (c) and (d). In part (a), the candidates were required to show that $\frac{\sin 3\alpha}{\sin \alpha} - \frac{\cos 3\alpha}{\cos \alpha} = 2$. In part (b), the candidates were required to prove that $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \tan 2x$. In part (c), they were required to solve for β in the equation $\tan^{-1}\left(\frac{\beta - 1}{\beta - 2}\right) + \tan^{-1}\left(\frac{\beta + 1}{\beta + 2}\right) = \frac{\pi}{4}$. In part (d), they were required to re-write $4\cos \theta + 3\sin \theta$ in the form $R\cos(\theta - \alpha)$, and then to solve the equation $4\cos \theta + 3\sin \theta = \frac{5\sqrt{2}}{2}$ in the interval $\frac{\pi}{2} \le \theta \le 2\pi$.

The analysis of data shows that the question was attempted by 10,331 (76.8%) candidates, out of whom 78.3 per cent of the candidates scored 12 to 20 marks. Further analysis shows that 13.8 per cent of the candidates scored 7 to 11.5 marks and 8.0 per cent scored from 0 to 6.5 marks. The data also shows that 1153 (11.2%) candidates scored 20 marks while 125 (1.2%) candidates scored 0. Therefore, the candidates' performance in this question was good. The summary of candidates' performance is presented in Figure 16.

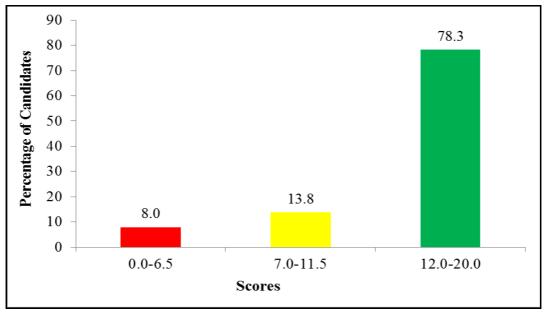


Figure 16: Candidates' Performance in Question 5

The candidates who performed well in this question had the appropriate knowledge of the topic on trigonometry and followed all the necessary steps. In part (a), the $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$ applied the triple angle formulae, candidates and $\sin 3\alpha$ $\cos 3\alpha$ $\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$ then substituted these expressions into and $\sin \alpha$ $\cos \alpha$ $\sin 3\alpha$ $\cos 3\alpha$ on simplifying, they obtained 2. Other candidates combined with $\sin \alpha$ $\cos \alpha$ $\frac{\sin 3\alpha \cos \alpha - \cos 3\alpha \sin \alpha}{\alpha}$, and from this combination, some candidates applied the $\sin \alpha \cos \alpha$ concept of compound angle formulae $\sin 3\alpha \cos \alpha - \cos 3\alpha \sin \alpha = \sin(3\alpha - \alpha)$ while factor formulae others applied the concept of

$$\sin 3\alpha \cos \alpha - \cos 3\alpha \sin \alpha = \frac{1}{2} (\sin 4\alpha + \sin 2\alpha) - \frac{1}{2} (\sin 4\alpha - \sin 2\alpha).$$
 On simplifying,

they all ended up with the required result. In part (b), the candidates applied the concept of factor formulae

$$\sin x + \sin 2x + \sin 3x = \sin 2x + (\sin x + \sin 3x) = \sin 2x + 2\sin\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right) \quad \text{and}$$
$$\cos x + \cos 2x + \cos 3x = \cos 2x + (\cos x + \cos 3x) = \cos 2x + 2\cos\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right).$$
Then they substituted these expressions into
$$\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x} \text{ and simplified it to}$$

Then they substituted these expressions into $\frac{1}{\cos x + \cos 2x + \cos 3x}$ and simplified it to obtain $\tan 2x$.

In part (c), the candidate applied the concepts of inverse of trigonometric functions as well as the concept of compound angle formulae to obtain the required value of β .

That is, they considered
$$\tan^{-1}\left(\frac{\beta-1}{\beta-2}\right) = A$$
 then $\Rightarrow \tan A = \frac{\beta-1}{\beta-2}$ and $\left(\frac{\beta+1}{\beta-2}\right) = A$ then $\Rightarrow \tan A = \frac{\beta-1}{\beta-2}$

 $\tan^{-1}\left(\frac{\beta+1}{\beta+2}\right) = B$ then $\Rightarrow \tan B = \frac{\beta+1}{\beta+2}$. Thereafter, they applied the tangent of

$$A + B = \frac{\pi}{4} \text{ to obtain the equation } \frac{\beta - 1}{\beta - 2} + \frac{\beta + 1}{\beta + 2} = 1 - \left(\frac{\beta - 1}{\beta - 2}\right) \left(\frac{\beta + 1}{\beta + 2}\right).$$
 Then, they simplified and solved this equation to obtain the required value β as $\pm \frac{\sqrt{2}}{2}$.

In part (d), the candidates were able to express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta - \alpha)$ by applying the concept of compound angle formulae. They expanded $R\cos(\theta - \alpha)$ into $R(\cos\theta\cos\alpha + \sin\theta\sin\alpha)$ and equated this expression to $4\cos\theta + 3\sin\theta$. On comparing, they obtained $R\cos\alpha = 4$ and $R\sin\alpha = 3$. Then, they determined $\tan\alpha = \frac{3}{4}$ which led to obtain $\alpha = \tan^{-1}\left(\frac{3}{4}\right)$ and R = 5. Using these results, they solved the equation $4\cos\theta + 3\sin\theta = \frac{5\sqrt{2}}{2}$ by replacing $4\cos\theta + 3\sin\theta$ with $5\cos\left(\theta - \tan^{-1}\left(\frac{3}{4}\right)\right)$ and finally they obtained the required values of θ , 1.43 rad (or 81.87°) and 6.14 rad (or 351.87°).

50	sel utim	
	Requed to show That for all value, of a	
	f_{n} = g_{n}	
	Sin a coja	
	Connder left hand note	
	$\sin 3\alpha = \cos 3\alpha = \sin 3\alpha \cos \alpha - \cos 3\alpha \sin \alpha$	
	and cuid hind cuid.	
	= Sin Jaeva - WSJasina	
	fin x ws x.	
f	= hin (1q-q)	
	- find Wid	
†	$=$ $\sin 2 q$	-
1 1	erzy ling.	
	= 2 hn $q evs x$	
	din a WDA.	
	= ?	
	fince left hand riche = Right hand side	
4	theofue	
+	finite - cuile = 2	
-	Ang Caisa	
+	Hence shum!	_
-	statim	
+	Requed to prove That Gux + Sunix + Sunix = KINIX = KINIX = KINIX = KINIX	
1 +	consider left hand tide.	
4	fin X + fin 2X + fin 3X = fin X + fin 3X + fin iX	
1 1	$c_{0,\chi} + c_{0,\chi} + c_{0,\chi} + c_{0,\chi} + c_{0,\chi} + c_{0,\chi}$	
	= Prinzx corx + sin 2X	
	2 COV 2X CUIX + CUI X	
	$= p \ln X (exp x \neq 1)$	
]	RCUILX (UNX+1)	
	$=$ $\tan 2\chi$	
	fince left hand orde = reght hand ride.	

Extract 15.1 shows a sample of the correct solutions from one of the candidates who had sufficient knowledge on this topic.

	Itre fue
	$\sin x + \sin ax + \sin 3x = \tan 2x$
	\overline{C} $x + \overline{C}$ $x + \overline{C}$ $x + \overline{C}$
	Hence price pri
50	station
	pequed to solo for value of B.
	Gwen
•	$\frac{kn^{T}(B-L) + kn^{T}(\frac{\beta+L}{\beta+L}) = \pi}{p}$
	$\frac{1}{2} + \frac{1}{4} = \frac{1}{2} + \frac{1}$
	(B-2) (B-2)
	tten ·
	A+D= II (Apply lan batt side
	$\frac{hn(A+B) = hn \pi}{hnA + hnB} = hn\pi/p$ $\overline{1 - hnA hB}$
	ANA + KNR = KNIT/
	$\frac{h}{h} \frac{h}{h} \frac{\pi}{h} = 1 - h \frac{h}{h} \frac{h}{h} \frac{h}{h}$
	$\tan A \neq \tan B = 1 - \tan A \tan B$
	$\frac{\operatorname{Pau}\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0-1\\ B-2\end{array}\right)\right)+\operatorname{Pau}\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0+1\\ B+2\end{array}\right)\right)=1-\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0-1\\ B-2\end{array}\right)\right)\operatorname{Pau}^{\dagger}\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0+1\\ B+2\end{array}\right)\right)=1-\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0-1\\ B-2\end{array}\right)\right)\operatorname{Pau}^{\dagger}\left(\operatorname{Pau}^{\dagger}\left(\begin{array}{c}0+1\\ B+2\end{array}\right)\right)$
	B-1 + B+1 = 1 - (B-1)/B+1
	$\frac{B-1}{B-2} + \frac{B+1}{B+2} = 1 - \left(\frac{B-1}{B-2}\right)\left(\frac{B+1}{B+2}\right)$
	(B-1)(B+2) + (B-2)(B+1) = (B-2)(B+2) - (B-1)(B+1)
	$B^{2} + RB - B - P + B^{2} + B - RB - P = B^{2} - 4 - B^{2} + 1$
	$a^2B^2 - 4^2 = -4+1$
	$2n^2 - \varphi = -3$
	$QB^{2} = -3 + \varphi$
	$2R^{2} = 1$
	$\int B^2 = \sqrt{1-2}$
	$B = \frac{1}{2}$
	the value of B is JT/2

1)	solution.	
	- Gwan: 4030 + 71100	
	Request: bexpress in from Rwi(0-a).	
	let	
	let $key (\theta - q) = 4eys + 3 \sin \theta$ $key o cin \alpha + 12 \sin \alpha + \alpha - 4eyre + 7 \sin \theta$	
	Revolus q = 4000-	
	$kev_{3} = \varphi = - \cdot \frac{1}{2}$	
	Kin & fin q = 34no	
	Lsin q = 3 iy	
	Squar paning and equity	
	Square paris and equiv $12 \cos^2 x = 46.$ $12^{14} \sin^2 x = 9$	
	$l^{\perp}hu^{2}d = q$	
	then a doly the equand equations	
	Here adding the equation is $P^{\perp}(contract + annar) = 16 + 9$ $\int R^{\perp} = \int 2 f$	
	$\int \Omega^{\perp} = \int 2 \hat{\zeta}$	
	R = 5	
\vdash	Iten divido equivoral equiv	
┝─┼	Pain or = 3/ Revig /4	
\vdash		
\vdash	$\frac{\tan \alpha = 3}{\alpha = \tan^2(3)}$	
	$\frac{q'=\ln^{-7}(2)}{h_{0}}$	
\vdash	4'= 3619'	
$ \vdash $		
\vdash		
\vdash	$\frac{4\omega_{10}c + 16\omega_{10}c}{4\omega_{10}c + 16\omega_{10}c} = 5\omega_{1}(0 - 16.9^{\circ})$	
\vdash	Reque to solve fr. 4 cs & f3 sind = 5 vp	
┠┼		
	$\sin a \cdot 4 \cos a + 3 \sin a = \sin (0 - 36.9^{\circ})$	
┣┼		

$$\frac{5 \text{ Ev}(6 - 36.9^{\circ}) = 5\sqrt{2}}{5}$$

$$\frac{5}{\sqrt{2}}$$

$$\frac{6}{3}(6 - 36.9^{\circ}) = \sqrt{2},$$

$$\frac{6 - 36.9^{\circ} = \sqrt{2},$$

$$\frac{6 - 36.9^{\circ} = 45^{\circ} = 6\sqrt{4},$$

$$\frac{6 - 36.9^{\circ} = 45^{\circ} = 6\sqrt{4},$$

$$\frac{7}{\sqrt{2}}$$

$$\frac{7}{\sqrt{$$

Extract 15.1: A sample of correct responses to question 5

In Extract 15.1, the candidate had sufficient knowledge of the topic on trigonometry. He approached each part, following all the necessary steps as well as applying the appropriate concepts accordingly.

On the other side, the analysis of the candidates' responses shows that some candidates had inadequate knowledge and skills on the concepts tested. For instance, in part (a), they applied inappropriate concepts. For example, some candidates used wrong trigonometric identities in trying to prove the given identity. They wrote $\frac{\sin 3\alpha}{\sin \alpha} - \frac{\cos 3\alpha}{\cos \alpha} = \frac{\sin 3\alpha \cos \alpha + \cos 3\alpha \sin \alpha}{\sin \alpha \cos \alpha} = \sin 2\alpha + \cos 2\alpha = 2(\sin^2 \alpha + \cos^2 \alpha)$. Other candidates confused trigonometric identities with trigonometric equations, as a result they solved the given identities.

In part (b), there were also some candidates who applied wrong identities. They considered the right hand side of the given equation as $\tan 2x$. After defining $\tan 2x$ in terms of $\sin 2x$ and $\cos 2x$, they wrote $\sin 2x = 2\sin 4x \cos x$ and $\cos 2x = 2\cos 4x \cos x$. Others applied wrong mathematical computation; they wrote

 $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}$ as $\frac{\frac{\sin x}{\cos x} + \frac{\sin 2x}{\cos 2x} + \frac{\sin 3x}{\cos 3x}}{1 + 1 + 1}$. In part (c), most of the candidates who failed to get the correct answer recalled correctly the concept of inverse of trigonometry but failed to simplify the obtained equation involving β . For example, one candidate obtained $2\beta^2 - \beta = 0$ which led them to obtain $\beta = \frac{1}{2}$ instead of

$$\beta = \pm \sqrt{\frac{1}{2}} \, .$$

In part (d), some candidates did not use the expression $R\cos(\theta - \alpha)$ in solving the equation $4\cos\theta + 3\sin\theta = \frac{5\sqrt{2}}{2}$ as they were instructed. Some used the identity $\cos^2\theta + \sin^2\theta$ to formulate the quadratic equation in $\sin\theta$ as $4\sqrt{1-\sin^2\theta} + 3\sin\theta = \frac{5\sqrt{2}}{2}$. Those candidates failed to simplify their equation to the correct form. As a result, they obtained $16(1-\sin^2\theta) + 9\sin^2\theta = \frac{5\sqrt{2}}{2}$. Others used t-formula to solve the equation.

Extract 15.2 provides an incorrect solution from one of the candidates who approached this question with wrong interpretation.

Required to prove that 50 Sin2x + Sin3x tan 22 + Cos 2r SE with out los bn. res ac τo Sinz SM Ze asso COLAX bosz 653X Cos22 Cosse COST fan 2X 2. an <u>x</u> 1 tan Z 1 Ĵ 22 ma 11(2

Extract 15.2: A sample of incorrect responses to question 5

In Extract 15.2, the candidate failed to use the factor formula to prove the given identity. Instead, the candidate divided the given equation by *cosine* throughout.

2.2.6 Question 6: Algebra

This question had four parts, (a), (b), (c) and (d). In part (a), the candidates were required to find the numerical values of p and q in the expansion of $\frac{1 + px + qx^2}{(1 - x)^2}$ if

the coefficients of x and x^2 are zero. In part (b), the candidates were required to use mathematical induction to prove that for every positive integer, $3^{2n-2} + 2^{6n}$ is divisible by 5. In part (c), the candidates were required to use the synthetic method to find the quotient and remainder when P(x) is divided by x+3 given that $P(x) = 2x^3 + 7x^2 - 5$. In part (d), they were required to find the determinant and

inverse of the matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 5 & 2 \\ 1 & -1 & 1 \end{pmatrix}$ and hence to solve the simultaneous equations

 $\begin{cases} 2x + y = 4\\ x + 5y + 2z = 7\\ x - y + z = 1 \end{cases}$

The data analysis shows that 7,525(56.0%) candidates answered this question, out of which 1,361(18.1%) candidates scored 0 to 6.5 marks. While 2,433(32.3%) candidates scored 7 to 11.5 marks and 3,731(49.6%) candidates scored 12 to 20 marks. Generally, the candidates' performance in this question was good as 81.9% of the candidates who attempted the question scored from 7 to 20 marks. Figure 17 illustrates the candidates' performance in this question.

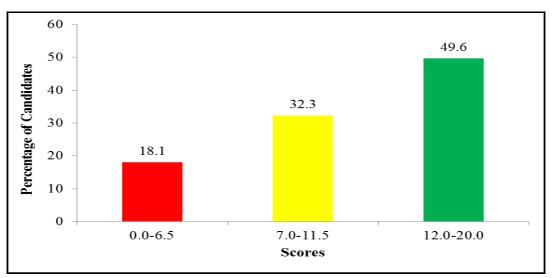


Figure 17: Candidates' Performance in Question 6

The candidates who performed well in this question understood the question and had appropriate knowledge on the topic of algebra. In part (a), the candidates transformed

the expression $\frac{1+px+qx^2}{(1-x)^2}$ into $(1+px+qx^2)(1-x)^{-2}$. Thereafter, they applied the Binomial theorem to expand $(1-x)^{-2}$ as far as the term in x^2 and obtained $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots$ Then, they multiplied this expression bv $(1 + px + qx^2)$ to obtain $1 + (2 + p)x + (3 + 2p + q)x^2 + (4 + 3p + 2q)x^3 + \dots$ Then, they equated 2+p equals to zero and 3+2p+q equals to zero and obtained the required values of p and q as -2 and 1 respectively. In part (b), the candidates went through all the three required steps of mathematical induction in proving the statement that $3^{2n-2} + 2^{6n}$ is divisible by 5. In step (i), they proved that the statement is true by substituting n = 1 into $3^{2n-2} + 2^{6n}$ to obtain $65 = 5 \times 13$. In step (ii), they assumed the statement was true for any positive integer k by substituting n = k into $3^{2n-2} + 2^{6n}$ to obtain $3^{2k-2} + 2^{6k} = 5m$ where $m \in N$. In step (iii), they substituted n = k+1 into $3^{2n-2} + 2^{6n}$ to obtain $3^{2(k+1)-2} + 2^{6(k+1)}$. Then, they used step (ii) to show that this statement was also true. They did this by substitution of statement of step (ii) into statement of step (iii). For example, some candidates made 2^{6k} the subject from step (ii) to obtain $2^{6k} = 5m - 3^{2k-2}$ and substituted this into $3^{2(k+1)} + 2^{6(k+1)}$ to obtain $S(k+1) = 3^{2(k+1)} + 2^{6(k+1)} = 5(64m - 11.3^{2k-2}).$

In part (c), the candidates were able to use the synthetic division method to find the quotient and remainder. They equated x+3 equals to zero and obtained x = -3. Then, they extracted the coefficients (2, 7, 0, -5) from the given polynomial function $P(x) = 2x^3 + 7x^2 - 5$. Finally, they arranged the coefficients in the following form:

-3	2	7	0	-5
		-6	-3	9
	2	1	-3	4

From that arrangement, they obtained the quotient and remainder as $2x^2 + x - 3$ and 4 respectively.

In part (d), the candidates computed the determinant of the given matrix A correctly by taking the sum of the products of the elements and the corresponding cofactors along

the first row as $|A| = 2 \begin{vmatrix} 5 & 2 \\ -1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 5 \\ 1 & -1 \end{vmatrix} = 15$. They computed the inverse of matrix A by following all the necessary steps. That is, computing determinant, cofactors, adjoint and then inverse. They computed the cofactors of the matrix and obtained $\begin{pmatrix} 7 & 1 & -6 \\ -1 & 2 & 3 \\ 2 & -4 & 9 \end{pmatrix}$. They computed the adjoint, adj(A) by transposing the matrix of cofactors and then the inverse $A^{-1} = \frac{1}{|A|}adj(A) = \frac{1}{15} \begin{pmatrix} 7 & -1 & 2\\ 1 & 2 & -4\\ -6 & 3 & 9 \end{pmatrix}.$ Thereafter, they solved the given simultaneous

equation using the inverse obtained and ended up with the correct answers such as $x = \frac{23}{15}$, $y = \frac{14}{15}$ and $z = \frac{6}{15}$. Extract 16.1 shows a sample of responses from one of the

 $1 + Px + qx^{2} = (1 + Px + qx^{2})(1 - x)^{-2}$ 6.6) $(1-x)^{2}$. $\frac{(1-x)^{2}}{(1+P(x+q,x^{2})(1-x)^{2}} \cdot \frac{(1+P(x+q,x^{2})(1-x)^{2}}{(1+P(x+q,x^{2})(1+p(x+q,x^{2})(1+p(x+q,x^{2})(1+p(x+q,x^{2})(1+q(x+q,x^{2}))))} - \frac{2}{2}$ (1+Px+9x2)(1+2x+3x2) 1+2x+3x2+Px+2Px2+3Px3+2x2+29x3+32x9 $1 + (2 + P)X + (3 + 2P + 9)X^{2} + 3PX^{3} + 29X^{3} + 39X^{4}$ orefficients . of X= QtP. x2 = 3+2P+9 . --€1) 3+20+9=0. ansider egn (1) 2+1 =0 P=-2 Substite P to equili 3+2(-2)+9-0 3+-4+9=0 -1+9=0 $q_{-} = 1$. : P=-2 and 2 = 1 $3^{2n-2} + 2^{6n} = 5m$ (required to prove) f_{f} it is true for n=1. $3^{a(1)} + 2^{6} = 6s + 13\times 5$. 51 Test hence it's true for n=1

candidates who performed well.

\$ 3

6 h) from 0	
6 b) for $n \ge 2$. $3^{2(2)-2} + 2^{6(2)} \ge 4105 \ge 825XS$	
3	
hence it's true for n=2	_
Assume it's the for n=k.	
,	
$3^{2K-2} + 2^{6K} = 5m$	
Then for $n = K + 1$. $3^{2(K+1)} - 2 + 2^{4(K+1)} = 5 m$	
<u>Gnsider</u> LHS. <u>32K+2-2</u> + 26K+6 = 3 ^{2K} + 2 ^{6K+6}	
34110 2 34 +2	
3ªK+26K+6(1)	
from n2K.	
$2^{6K} = 5m - 3^{2K-2}$	
from $n \ge k$. $2^{6k} \ge 5m - 3^{2k-2}$ Substrute 2^{6k} to eqn (i).	
32K+26K,26 -	
32K + (5m-32K-2)26	
2^{k}	
$\frac{3^{2k} + 5m \cdot 2^6 - 2^6 (3^{2k} \cdot 3^{-2})}{3^{2k} - 3^{2k} (2^6 \cdot 3^{-2}) + 5m \cdot 2^6}$	-
$3^{-3}(2^{-3}) + 5^{-1}$	
$3^{2k}(1-(2^{6},3^{-2}))+2^{6}x5m$	
$3^{2k}(-55) + 2^{6}m \times 5$.	
- 7 /	
$(3^{ak}(-11) + 2^{em})5. = 5m$.	
(19)	
where m is any number	
$\frac{3^{2(k+1)-2} + 2^{6(k+1)}}{5(3^{2k}(-1)) + 2^{6m}}$	
buk $kt = n$.	
$3^{2n-2} + 2^{6n} = 5m$	
hence proved!	l

$B(c) = P(x) = 2x^3 + 7x^2 - 5$.	
$\frac{X+3=0}{2}$	
X = +3.	
-3	
270-5	
0 -6 -3 9	
2 1 -3 4 remainder.	
- Quotient	
.". Remainder is 4. and quotient of the equation	<u> </u>
is $2x^2 + x - 3$	
	_
d) $A_{2}(2 0)$	
1 5 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
determintant. A.	
141 - Oleval de alvela el	
A = 2 5+2 -1 1-2 +0 -1-5	
= 2(7) + 1. + 0	
A =15.	
: Determinant of A is 15	
Co-factor of A	
$A^{c} = A^{c} = A^{c$	
-10 20 21	

-		
6	d) $A^{c_2}/7 = 1 - 6$	
-		
	2-49/	
	$A^{T_{2}}(7 - 1 2)$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·
	<u> </u>	
	8-1 1 (1)1.3	
	$A^{-1} = Adj(A)$	
	$A^{-1} = 1 \text{Adj}(A)$ (A)	
	$A^{-1} = \frac{1}{2} \left(\frac{1}{7} - 1 \right)$	
	A z / / d	
	$\frac{15}{1} - \frac{1}{2} - \frac{9}{1}$	
	-6 2 9	
· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} & (1A) \\ \hline & (A^{-1} - 1) \\ \hline & (A^{-1} - 1)$	
	to-on'	
	i. Inverse of A = (715 - 715 % s).	
	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	
	<u> </u>	
	- 2/5 1/5 3/5	
	from ;	
	$\int 2X + y = 4$	
	x+sy+2zz7	
	$\left(x - 9 + 7 z \right)$	
	$\left(2! \circ \right) \left(X \right) \left(4 \right)$	
	152 y 2 7	
	(1-1)/(2/(1))	
	but.	
	$\frac{\text{A Invese of mature} = 1}{15 1 2 - 4}$	
	15 1 2 - 4	
	-6 3 9	

$\begin{array}{ccc} \epsilon. d \end{pmatrix} A^{-1} A \begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} \mathbf{q} \\ \mathbf{q} \end{pmatrix} \\ \begin{pmatrix} \mathbf{q} \\ \mathbf{q} \end{pmatrix} \\ \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
X = 23, y = 14, and Z = 2, /15 /15 S	

Extract 16.1: A sample of correct responses to question 6

In Extract 16.1, the candidate used the binomial theorem to calculate the numerical values of p and q. He/she also used mathematical induction to prove that the given statement is divisible by 5. Likewise, the candidate was able to find the remainder of the function by synthetic division. Finally, the candidate found the determinant and inverse of the given matrix which used to solve the simultaneous equation by inverse method.

On the other hand, the analysis reveals that, there were candidates who did not understand how to solve this question. In part (a), the candidates failed to transform $1 + px + qx^2$

$$\frac{1+px+qx}{(1-x)^2}$$
 into $(1+px+qx^2)(1-x)^2$ instead they partilised the given expression by

letting
$$u = 1 - x$$
 to obtain $\frac{1}{u^2} + \frac{px}{u^2} + \frac{qx^2}{u^2} = \frac{1}{(1-x)^2} + \frac{px}{(1-x)^2} + \frac{qx^2}{(1-x)^2}$. Then, they

equated $\frac{p}{(1-x)^2}$ and $\frac{q}{(1-x)^2}$ to zero and obtained wrong values of p=0 and q=0. Other candidates did not apply the Binomial theorem to expand the given expression $\frac{1+px+qx^2}{(1-x)^2}$. They instead equated $1-px+qx^2$ to $(1-x)^2$ and set x=1 and x=-1 in trained to explane for p and q which resulted in wrong values of p and q as -1 and 0.

trying to solve for p and q, which resulted in wrong values of p and q as -1 and 0 respectively. Furthermore, there were candidates who equated the expression

 $\frac{1+px+qx^2}{(1-x)^2}$ to 1, aiming to solve for p and q. This could not help them as they failed even to solve the equation they had formulated.

In part (b), the candidates failed to write the general assumption in step (ii). They wrote $3^{2k-2} + 2^{6k} = 5$ instead of $3^{2k-2} + 2^{6k} = 5m$. They also wrote a wrong statement in step (iii) as $3^{2(k+1)-2} + 2^{6(k+1)} = 5$ instead of $3^{2(k+1)-2} + 2^{6(k+1)}$. Using these statements and improper substitutions ended up with wrong result $2^{6k+6} + 3^{-1} = 1$.

In part (c), some candidates did not extract the coefficients from the given polynomial equation, they wrote:

They also used subtraction instead of addition. This made the candidates get the wrong results $13x^2 + 39x + 112$ and 0 as quotient and remainder respectively. In part (d), the candidates did not understand the question. Some of them solved the question using inappropriate techniques such as substitution method instead of inverse method while others used Crammer's rule in their solution. Other candidates applied wrong concepts in finding the inverse matrix. They calculated the inverse A^{-1} by multiplying the

determinant by the coefficient matrix, that is, $A^{-1} = \frac{1}{15} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 5 & 2 \\ 1 & -1 & 1 \end{pmatrix}$. Also, there were

other candidates who used the concepts of determinant in finding the cofactors of matrix A. They wrote:

 $A_{c} = \begin{pmatrix} 2\begin{vmatrix} 5 & 2\\ -1 & 1 \end{vmatrix} & -1\begin{vmatrix} 1 & 2\\ 1 & 1 \end{vmatrix} & 0\begin{vmatrix} 1 & 5\\ 1 & -1 \end{vmatrix}$ and lastly they failed to determine the correct $\begin{vmatrix} 1 & 0\\ -1\begin{vmatrix} 1 & 0\\ -1 & 1 \end{vmatrix} & 5\begin{vmatrix} 2 & 0\\ 1 & 1 \end{vmatrix} & -2\begin{vmatrix} 2 & 1\\ 1 & -1 \end{vmatrix}$ $1\begin{vmatrix} 1 & 0\\ 5 & 2\end{vmatrix} & 1\begin{vmatrix} 2 & 0\\ 1 & 2 \end{vmatrix} & 2\begin{vmatrix} 2 & 1\\ 1 & 5 \end{vmatrix}$

answer.

Extract 16.2 illustrates an incorrect response from one of the candidate who attempted the question in part (a).

$$\int e^{1} dx + qx^{2}$$

$$(2) 1 + fx + qx^{2}$$

$$(1-x)^{2}$$

$$Tf the Gefficiends of x and x^{2}$$

$$are 2are then$$

$$1 + fx + qx^{2} = 1$$

$$(1-x)^{2}$$

$$1 + fx + qx^{2} = (1-x)^{2} + .$$

$$1 + fx + qx^{2} = (1-x)^{2} + .$$

$$1 + fx + qx^{2} = (1-x)^{2} + .$$

$$1 + fx + qx^{2} = 1 - x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$0 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$1 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

$$2 + fx + qx^{2} = 1 - 2x + x^{2}$$

Extract 16.2: A sample of incorrect responses to question 6(a)

In Extract 16.2, the candidate failed to use the Binomial theorem to calculate the numerical value of p and q. Thus, he/she used inappropriate approach and failed to get the correct answer.

2.2.7 Question 7: Differential Equations

The question comprised four parts, (a), (b), (c) and (d). Part (a) (i), required the candidates to determine the most general function M(x, y) such that the differential equation $M(x, y)dx + (2x^2y^3 + x^4y)dy = 0$ is exact. And (a) (ii), required the candidates to solve the differential equation $(xy+x)dx - (x^2y^2 + x^2 + y^2 + 1)dy = 0$ by separating the variables. In part (b), the candidates were asked to find the general solution of the differential equation $\cos x \frac{d^2y}{dx^2} - \sin x \frac{dy}{dx} = 0$. In part (c), the question stated that: A liquid of 72°C placed in a room at 25°C has a temperature of 65°C after 5 minutes. Then, the candidates were asked to find its temperature after further 10 minutes. Part (d), required the candidates to formulate a differential equation of a circle

The question was attempted by 1,649 candidates (12.3%), whereby 35.4 per cent scored from 0 to 6.5 marks, 38.8 per cent scored from 7 to 11.5 marks and 25.8 per cent scored from 12 to 20 marks. The candidates' performance in this question was good, as 64.6 per cent of the candidates scored from 7 to 20 marks. Figure 18 provides a summary of the candidates' performance in this question.

which passes through the origin and whose centre lies on the y-axis.

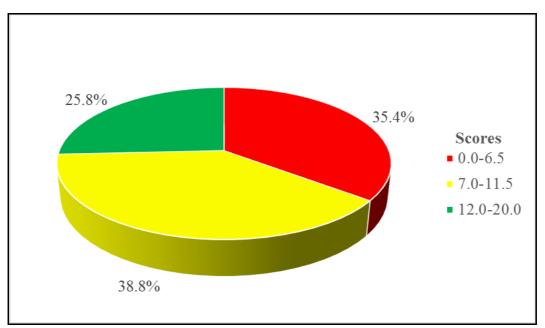


Figure 18: Candidates' Performance in Question 7

The analysis of data shows that, among 1,649 candidates who attempted this question, there were 23 (1.4%) candidates who scored 20.0 marks while 30 (1.8%) candidates scored 0 mark.

The candidates who attempted the question correctly had adequate knowledge of differential equations. In part (a) (i), they were able to state the conditions for to be exact, that is, $\frac{\partial N}{\partial x}(x, y) = \frac{\partial M}{\partial y}(x, y)$ differential equations thus $\frac{\partial N}{\partial x}(x, y) = 4xy^3 + 4x^3y$. Then, they managed to apply integration skills on $\partial M(x, y) = (4xy^3 + 4x^3y)dy$ to get the general function $M(x, y) = xy^4 + 2x^3y^2 + A$ as per the question's instructions. In part (a) (ii), the candidates managed to separate variables by collecting like terms $\left(\frac{x}{x^2+1}\right)dx = \left(\frac{y^2+1}{y+1}\right)dy$ and applying the concept of integration to get the required equation, $\frac{1}{2}\ln(x^2+1) = \frac{y^2}{2} - y + 2\ln(y+1) + c$. Also, in part (b), candidates were able to reduce the second order differential equation into first differential order equation as $\cos x \frac{d^2 y}{dx^2} - \sin x \frac{dy}{dx} = 0 \Rightarrow \cos x \frac{d}{dx} \left(\frac{dy}{dx}\right) + \frac{d}{dx} (\cos x) \frac{dy}{dx} = 0$. Then, they evaluated $\frac{d}{dx}\left(\cos x \frac{dy}{dx}\right) = 0$ to get $y = c \ln(\sec x + \tan x) + A$ which was the required solution. In part (c), the candidates were able to apply skills of differential equation as well as integration skills by using the given data t = 0 minute, $\theta = \theta_0 = 72^{\circ}C$ into equation $\frac{d\theta}{dt} = -k(\theta - 25)$ to obtain $k = -\frac{1}{5}\ln\left(\frac{40}{47}\right)$. Then, they computed temperature after 10 minutes to get $53.97^{\circ}C_{\perp}$ as required .They finally recalled the general equation of a circle in part (d), which was $x^2 + y^2 + 2gx + 2fy + c = 0$. Then, they reduced the equation to $x^2 + y^2 + 2fy = 0$ since it lies on y-axis. Thereafter, they applied the

differentiation skills to get
$$f = \frac{-\left(x + y\frac{dy}{dx}\right)}{\frac{dy}{dx}}$$
 and substituted *f* into reduced equation of

 $M(x_{1}y) dx + (2x^{2}y^{3} + x^{4}y) dy = 0$ 7. (a) (i) Now; $M dx + (2x^2y^3 + x^4y)dy = 0$ So IF exact) $\partial m =$ 20 Ъч δx $\frac{\partial(2\chi^2 y^3 + \chi^4 y)}{\partial \chi}$ <u>3N) =</u> ठेप $= \mathscr{Q}^{3}(2\chi) + \mathscr{Y}(4\chi^{3})$ 9W ŠÅ $\frac{\partial M}{\partial M} = 4xy^3 + 4x^3 y$ dy $\partial M = (4xy^3 + 4x^3y)\partial y$ 7 (1)(1) Sol $M = [4x y^{3} \partial y + (4x^{3} y \partial y)]$ $M = 4xy^{4} + 4x^{3}y^{2} + c$ $4 \qquad 2$ $M = Xy^4 + 2x^3y^2 + C$ So hence; $M(x,y) = Xy^4 + 2x^2y^2 + C$

circle to get the required equation $(x^2 - y^2)\frac{dy}{dx} - 2xy = 0$. Extract 17.1 shows the response of a candidate who had adequate skills on the concept tested.

$\frac{4}{dx^2} \left(\begin{array}{c} b \end{array} \right) \frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$	
dxs dx	
$G_{2}vd^{2}y + -G_{2}vy dy = 0$	
$\frac{G_{3}xd^{2}y + -Smx dy}{dx} = 0$	
	· · · · · · · · · · · · · · · · · · ·
1 acr dy 1	
$\frac{d}{dx} = 0$	
$\frac{d\left(\frac{\partial Sx}{\partial x}\right)}{\frac{\partial x}{\partial x}} = 0$	
$d\left(Osx\frac{dy}{dx}\right) = \int O dx$	
J (GAR) J	
$A = \frac{\underline{\psi}}{\underline{x}} \times 260$	
X	
du - A du	
$xb \frac{A}{x e b} = eb$	
dy = ftsecrdx	
Jag - Jiseckuk	
y = A secret	
$y = A \ln (Sec x + \tan x) + C$	
8	
The general Solution is $U = Alm [Drivitany] + C \cdot$	
$y = A \ln (x c x t a n x) + c$	

Extract 17.1: A sample of correct responses to question 7(a) (i) and (b)

In Extract 17.1, part (a) (i), the candidate determined the general function M(x, y) correctly. Furthermore, in part (b), the candidate was able to solve the second order differential equation and got the general solution.

Even though most of the candidates attempted this question correctly, there were others who had no enough skills and knowledge of differentiation and integration to solve the differential equations. In part (a) (i), the candidates were not able to use partial derivatives correctly to justify whether differential equation was exact or not. For instance, some wrote: $\frac{dN}{dx} = 4xy^3 + 3x^3y$ and $\frac{dM}{dy} = 4xy^3 + 3x^3y$ from which they got the wrong functions such as $M(x, y) = xy^4 + \frac{3}{2}x^3y^2$ and $M(x, y) = 2x^2y^2$ instead of

 $M(x, y) = xy^{4} + 2x^{3}y^{2} + c$. In part (a) (ii), they failed to separate the variables. For example, a few of them wrote $\int \frac{dy}{(y^{2}+1)(y+1)} = \int \frac{xdx}{x^{2}+1}$ instead of $\int \left(\frac{y^{2}+1}{y+1}\right) dy = \int \left(\frac{x}{x^{2}+1}\right) dx$. Those candidates ended up with incorrect equation of $\tan^{-1} y - \frac{1}{2} \ln(1+y^{2}) + \ln(1+y) = \ln(x^{2}+1) + c$. Not only that but also some used the substitution y = ux. Then, they arranged it in the form $\frac{dy}{dx} = u + x\frac{du}{dx}$. From this step, they substituted the values obtained into $(xy+x)dx - (x^{2}y^{2}+x^{2}+y^{2}+1)dy = 0$ and concluded the solution to this differential equation as $\frac{du}{dx} = \frac{x - x^{4}u^{3} - u^{3} - u}{(x^{4}u^{2} + x^{2} + u^{2}x^{2} + 1)x}$ which was wrong and not even required. In addition to that, some candidates used the concept of integrating factor $R(x) = e^{sp(y)dy}$ instead of separating variables which made them get incorrect answers such as $\frac{y^{2}}{2} + y = \frac{1}{2}\ln(x^{2}+1) + c$ and $y = -\ln(\cos x) + c$.

In part (b), a few candidates failed to reduce second order differential equation into its substituted *m* into $\cos x \frac{d^2 y}{dx^2} - \sin x \frac{dy}{dx} = 0$ They to first order. get $m^2 \cos x - m \sin x = 0$. Then, they solved the equation by using the general quadratic formula, which resulted to incorrect solution $y = (Ax + B)e^{x \tan x}$. Also, others used tsubstitutions using $\cos x = \frac{1-t^2}{1+t^2}$ and $\sin x = \frac{2t}{1+t^2}$ into $m^2 \cos x - m \sin x = 0$ and got $y = A \left(\ln \left(1 - \tan^2 \left(\frac{x}{2} \right) \right) \right) + c$. In part (c), the candidates failed to apply the Newton's law of cooling to obtain the temperature of the liquid after 10 minutes. For example, formula $T_t = T_s - (T_0 - T_s)e^{-k}$. Then, they they used the substituted $T_0 = 72c, T_s = 25c, T_t = 65c, t_1 = 5c, t_2 = 10c$ to obtain $65 = 25 - 7e^{-5k}$ which led to $k = \ln\left(\frac{8}{7}\right)$. By using the value of k, they obtained the temperature after 10 minutes such as 23.158°C, 50°C, 35.99°C instead of 53.97°C. In part (d), some candidates used the equation $x^2 + y^2 = r^2$ that led to incorrect differential equation of $y\frac{dy}{dx} + x = 0$. Extract 17.2 shows an incorrect response from one of the candidates who attempted this question.

7	(a) 1/ colution	
	love lo	+
	$M(y_{in}) dy + (2x^2y^2 + x^4y) dy = 0$	
	$M(x_{iy}) dx + (2x^2y^2 + x^4y) dy = 0$ since it is exact	
	At = let 2x2y2 fx y be N	
	$AA_{x} = let 2x^{2}y^{2} + x^{0}y be N$ $\frac{\partial P}{\partial x} = 4xy^{2} + 4x^{3}y.$	4
	$N(\overline{x}, w) = \int (2x^2y^2 + x^2y) dy$	+
	V(r) = 2.3 + 4.2	+
	$F(x_{1}y) = 2x^{2}y^{3} + x^{4}y^{2}$	+
	$let M[x_{in}] = \frac{2x^2y^3}{7}$	+
	7	
	8 M	
	$\frac{\partial M}{\partial y} = \frac{2x^2 \cdot 7y^2}{3} = \frac{2x^2y^2}{3}$	_
		+
	$let M(x_{10}) = x^{4}y^{2}$	
		+
	$\frac{\partial M}{\partial y} = \frac{\chi^{\varphi} \cdot 2y}{2} = \frac{\chi_{0} \varphi}{\chi_{0} \varphi}$	
	$a_{150} M = \left[2x^2y^2 dx + 2x^3y^2 \right]$	
	3	
	$M(x_1y) = 2x^2y^2$	
	The value of the firm etim	-+
	$M(x_{i}u) = 2x^2y^2$	
P	·	

7 a) ii)
$$(xy+x)dx - (x^{i}y^{2}+x^{2}+y^{2}+1)dy = 0$$

 $(X^{i}y^{2}+x^{2}+y^{i}+1)dy = (xy+x)dx.$
 dx
 dx
 $(X^{i}y^{2}+x^{2}+y^{i}+1)dy = xy+x$
 dx
 $(X^{i}y^{2}+x^{2}+y^{2}+1)(y = xy+x)$
 $dy = y + xdy$
 $dy = y + xdy$
 $(X^{i}(ux)^{2}+x^{2}+ux^{2}+1)(u+xdy) = x^{i}y + x$.
 $(X^{i}ux)^{2}+x^{2}+ux^{2}+1)(u+xdy) = x^{i}y + x$.
 $(X^{i}u^{2}+x^{2}+ux^{2}+1)(u+xdy) = x^{i}y + x$.
 $(X^{i}u^{2}+x^{2}+ux^{2}x^{2}+1)$
 $dx = x^{i}u + x - (u^{i}y^{2}+ux^{2}+u^{2})$
 $dx = x^{i}u + x - x^{i}u^{2}-ux^{2} + 1$.
 $X^{i}dy = x^{i}u + x^{i}+u^{i}x^{2}+1$.
 $X^{i}dy = x^{i}u^{i} + x^{i}+u^{i}x^{2}+1$.
 $X^{i}dy = -x^{i}u^{i}x - u^{2} - u$
 $dx = x^{i}u^{i} + x^{i} + u^{i}x^{i} + 1$.
 $X^{i}dy = -x^{i}u^{i}x - u^{2} - u$
 $dx = x^{i}u^{i} + x^{i} + u^{i}x^{i} + 1$.
 $X^{i}dy = -x^{i}u^{i}x - u^{2} - u$

7. b)
$$\cos x dy - \sin x dy = 0$$

 dx^{2} dx
 $dy = dy$
 $dy = ftax dx$
 $\int dy = ftax dx$
 $\int dy = ftax dx$
 $f = bx \cos x$
 $dy = cos x$
 $dy = cos x$
 dx
 $dy = ftax dx$
 $dy = cos x$
 $dy = cos x$
 $dy = ftax dx$
 $dy = ftax dx$

Extract 17.2: A sample of incorrect responses to question 7

In Extract 17.2, in part (a), the candidate was not able to determine the correct general function M(x, y) and also failed to solve the given differential equation by separating the variables. Also, in part (b), he/she was not able to solve the second order differential equation.

2.2.8 Question 8: Coordinate Geometry II

The question stated:

- (a) Find the coordinates of foci, the vertices, the eccentricity and the length of the latus rectum of the hyperbola $16x^2 9y^2 = 576$.
- (b) (i) Determine the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$.
 - (ii) If the normal in part (b) (i) meets the x-axis at A and the y-axis at B, find the area of the triangle AOB where O is the origin.

- (c) Show that the equation of the tangent to the parabola $y^2 = 4ax$ at the point $(at^2, 2at)$ is $x ty + at^2 = 0$
- (d) (i) Change the Cartesian equation $(x^2 + y^2)^3 2xy(x^2 y^2)$ into a polar equation.
 - (ii) Sketch the graph of $r = 1 2\cos\theta$ from $\theta = 0$ to $\theta = 2\pi$.

The data analysis shows that, 7,287 (54.2%) candidates opted this question whereby 526 (7.2%) candidates scored from 0 to 6.5 marks. Moreover, the data shows that 2,201 (30.2%) candidates scored from 7 to 11.5 marks and 4,560 (62.6%) candidates scored from 12 to 20 marks. Generally, the candidates' performance in this question was good as shown in Figure 19.

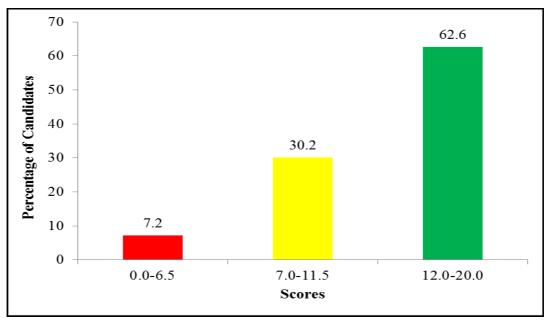
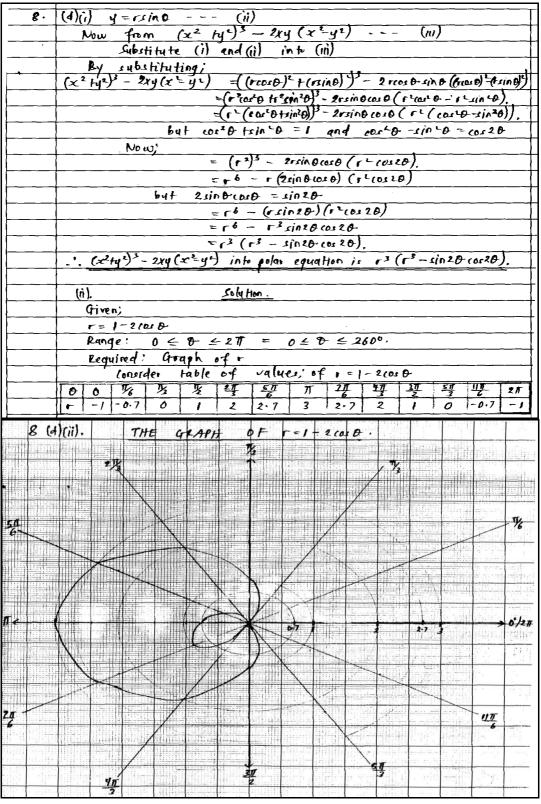



Figure 19: Candidates' Performance in Question 8

Further analysis depicts that, among the candidates who opted for the question, 2.5 per cent scored 20 marks.

The candidates who performed well were able to divide the equation $16x^2 - 9y^2 = 576$ to get $\frac{x^2}{36} - \frac{y^2}{64} = 1$ which was compared to the general equation of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in part (a). Then, they obtained the coordinates of foci, vertices, eccentricity and length of latus rectum as $(\pm 10,0)$, $(\pm 6,0)$, $\frac{5}{3}$ and 21.33 units respectively as per requirement. In part (b) (i), the candidates were able to compute the slope of tangent to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ as $m_n = \frac{a\sin\theta}{b\cos\theta}$. Then, they used this slope and contact point $P(a\cos\theta, b\sin\theta)$ to obtain normal equation as $y = \frac{a\sin\theta}{b\cos\theta}x + b\sin\theta - \frac{a^2}{b}\sin\theta$. In part (b) (ii), they were able to obtain $\left(\frac{a^2-b^2}{a}\cos\theta, 0\right)$ and $\left(0, \frac{b^2-a^2}{b}\sin\theta\right)$ as the coordinates of A and B respectively. Finally, the obtained coordinates enhanced them to calculate the area of the triangle AOB as $A = \frac{1}{2} \frac{(b^2-a^2)(a^2-b^2)}{ab}\sin\theta\cos\theta$.

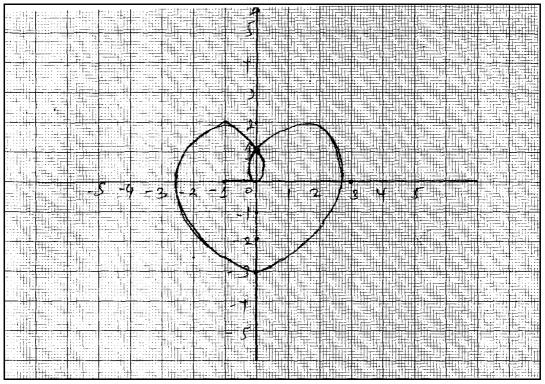
In part (c), they were able to use chain rule to get the gradient of the curve at the point of contact as $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = 2a \times \frac{1}{2at} = \frac{1}{t}$. Then using the gradient obtained they found the equation of the tangent as $\frac{y-2at}{x-at^2} = \frac{1}{t}$ hence they were able to show that $x-ty+at^2 = 0$. In part (d) (i), the candidates defined correctly the parametric value for $x = r\cos\theta$ and $y = r\sin\theta$. Then, they substituted them directly into expression $(x^2 + y^2)^3 - 2xy(x^2 - y^2)$ to get $r^6 - r^4\cos 2\theta\sin 2\theta = r^4(r^2 - \cos 2\theta\sin 2\theta)$. In part (d) (ii), they were able to prepare a table of values for $r = 1 - 2\cos\theta$ correctly which was used to sketch the graph from $\theta = 0$ to $\theta = 2\pi$. Extract 18.1 shows a sample of correct responses from one of the candidates.

Extract 18.1: A sample of correct responses to question 8(a) and (d)

In Extract 18.1, part (a), the candidate was able to find the foci, vertices, eccentricity and length of latus rectum from the given hyperbola. Likewise, in part (d), (i) he/she changed the Cartesian equation into polar equation and lastly in (ii) sketched the correct graph of the given polar equation.

Apart from those candidates who performed well this question, there were some candidates who faced challenges due to lack of knowledge and skills on Coordinate Geometry. In part (a), there were a number of candidates who used the concepts of the hyperbola which lies on y-axis instead of x-axis. For this case, they got incorrect values of foci, vertices, eccentricity and length of latus rectum such as $(0,\pm 10)$, $(0,\pm 10)$ $(0,\pm 8)$, $\frac{5}{4}$ and $\frac{9}{8}$ units respectively. Furthermore, a few candidates used $\frac{5}{4}c^2 = b^2 - a^2$ and got incorrect answers. For example, they showed foci = $(\pm \sqrt{28}, 8)$, vertices = $(\pm 8, 0)$, eccentricity = $\frac{\sqrt{28}}{8}$ and length of latus rectum equals to 18.

In part (b) (i), the candidates were unable to apply the concept of perpendicular lines that made them get incorrect equation of the normal such as $yxb^2 + a^3y\cos\theta - a^2yx - b^3x\sin\theta = 0$, $b^2x\sin\theta - a^3y\cos\theta + a^2xy - b^2x = 0$ and $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = c^2$. Others showed that $\frac{ax}{\cos\theta(a^2 + b^2)} - \frac{by}{\sin\theta(a^2 + b^2)} = c^2$. In part (b) (ii) a faw, condidates used incorrect coordinates such as $A\left(\frac{c^2}{\cos\theta}, 0\right)$ and


(ii), a few candidates used incorrect coordinates such as $A\left(\frac{c^2}{a}\cos\theta, 0\right)$ and

$$B\left[0, \frac{c}{a}\sin\theta\right] \text{ to find the area of a triangle and ended up with wrong results like}$$
$$A = \frac{c^4\sin\theta\cos\theta}{2ab} \text{ and } A = \frac{1}{2}\left(\frac{b^3}{a}\cos\theta\sin\theta - \frac{\sin\theta}{a} - a\cos\theta\sin\theta + \frac{a^3\cos\theta\sin\theta}{b^2}\right).$$

In part (c), some candidates used the point $(0, at^2)$ as the focus of the parabola, foot of perpendicular (-x, 2at) and the moving point $(at^2, 2at)$ on the parabola. Then, they compared the distance from the focus and foot of perpendicular to obtain $x-2at+at^2 = 0$ instead of $x-ty+at^2 = 0$. In part (d) (i), a few candidates substituted the formula $r^2 = x^2 + y^2$ into $(x^2 + y^2)^3 - 2xy(x^2 - y^2)$ to obtain the incorrect answer $(x^2 + y^2)^3 - 2xy(x^2 - y^2) = (r^2)^3 + 2xy^2$ or $r^6 - 2r^2(r^2 + x^2y^2)$. In part (d) (ii), some

candidates were able to prepare table of values but they were not able to sketch the graph of $r = 1 - 2\cos\theta$. Extract 18.2 provides a sample of incorrect responses from a certain candidate.

ales olution (X2+4)3 - 2X4 (x2+42). -from V=1x2+42 12 = X2+45. $(V^2)^3 - 2Xy(V^2)$ YG- 2Xy V2. X = J m2 - y2 V6-2[(V2-U2)[V7-X2)]V2 NG - 2 (V2-y2) (Y7-X7) / Y2 v6 - 2+2 (v4 - +1x2 - +2y2 + x2y2) $v^{6} - 2v^{2} (v^{4} - x^{2}x^{2} + v^{2}) + x^{2}v^{2}$ v6 - 2+2 1- + 2+ x2+ y2 B. Q v6-212 [12 + x242]. v-6-242 (12+ (2-42) (2-x2) 16-242 12+ 14-12×2-12y2+×2y2 NG - 2N2 JV2 + X242 - : v 6 - 2v2 [v2 + x2y2] Hence shawn!

Extract 18.2: A sample of incorrect responses to question 8(d)

In Extract 18.2, the candidate was not able to change the Cartesian equation into polar equation and lastly in (ii), he/she failed to sketch the graph of the given polar equation.

3.0 ANALYSIS OF CANDIDATES' PERFORMANCE IN EACH TOPIC

The candidates were examined on 18 topics out of which 10 topics were tested in Advanced Mathematics 1 and eight (8) topics in Advanced Mathematics 2. Advanced Mathematics 1 consisted of ten (10) questions and Advanced Mathematics 2 consisted of eight (8) questions. The topics examined from Advanced Mathematics 1 includes; *Calculating Devices, Hyperbolic Functions, Linear Programming, Statistics, Sets, Functions, Numerical Methods, Coordinate Geometry I, Integration* and *Differentiation*. Advanced Mathematics 2 consisted of *Probability, Logic, Vectors, Complex Numbers, Trigonometry, Algebra, Differential Equations* and *Coordinate Geometry II*.

The analysis of responses in each topic reveals that 14 out of 18 topics had good performance. The topics with good performance were *Logic* (98.4%), *Coordinate Geometry II* (92.8%), *Trigonometry* (92.0%), *Sets* (91.4%), *Linear Programming* (87.8%), *Statistics* (82.3%), *Algebra* (81.9%), *Calculating Devices* (79.8%), *Vectors*

(71.9%), Hyperbolic Functions (70.9%), Numerical Methods (66.9%), Differential Equations (64.6%), Complex Numbers (63.6%) and Functions (60.4%) as summarized in Appendix I.

The good performance in these topics was contributed by candidates' ability to:

- (a) use a scientific calculator to perform computations of various mathematical expressions.
- (b) solve related problems by using hyperbolic definitions.
- (c) formulate mathematical models and solve linear programming problems graphically.
- (d) apply the concepts of statistics to determine the measures of dispersion.
- (e) simplify set expressions and solve related problems by using Venn diagrams.
- (f) draw graphs of polar equations as well as rational, exponential and logarithmic functions.
- (g) apply the trapezium rule and Secant method in solving related problems.
- (h) find equations of tangent and normal to various conic sections as well as forming equations of circle in standard form.
- (i) determine the probabilities by using the concept of normal distribution, conditional probability and fundamental principle of counting.
- (j) test the validity of an argument by using the laws of algebra of propositions and truth tables.
- (k) apply the vector concepts to evaluate position vectors, unit vectors and work done by forces.
- (l) apply the concept of complex numbers in solving problems.
- (m) use trigonometric knowledge and skills to simplify and solve trigonometric problems.
- (n) apply the inverse matrix method in solving simultaneous linear equations involving three unknowns.
- (o) apply proper methods and techniques of differential equations in solving real life problems.

In spite of good performance in most of the topics, three topics of *Probability*, *Coordinate Geometry I* and *Differentiation* had an average performance of 55.0, 54.1, and 36.2 per cent, respectively. However, the topic of *Integration* had a weak performance of 22.6 per cent. The weak performance was mainly contributed by candidates' inability to:

- (a) apply the method of integration by parts in integrating the product of algebraic and exponential functions.
- (b) use partial fractions to evaluate definite integrals.

The analysis of the candidates' performance shows that, fifteen (15) topics were performed well, one (1) topic had average performance and two (2) topics were poorly performed in 2021. Comparatively, the analysis of the candidates' performance per topic reveals that, there was a fall in performance in nine (9) topics in 2022 compared to that of 2021 as indicated in Appendix II.

4.0 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

This report revealed the strengths and weaknesses of the candidates' responses to each question on the examined topics. Generally, the performance in 2022 was good; 97.89 per cent of the candidates passed the examination compared to 93.49 per cent who passed in 2021.

The analysis showed that the candidates had good performance in 14 topics, average performance in 3 topics and weak performance in 1 topic. The weak performance was contributed by failure of the candidates to apply the method of integration by parts in integrating the product of algebraic and trigonometric functions, using correctly the method of partial fractions to evaluate the definite integrals and apply the Maclaurin's series to obtain a series of logarithmic functions. It is expected that stakeholders will make use of the recommendations presented in this report to more enhance the future performance on Advanced Mathematics examinations.

4.2 Recommendations

In order to improve the candidates' performance in this subject especially on the topic about Integration, the following are recommended:

- (a) All concepts of functions, trigonometric functions, algebra, hyperbolic functions, coordinate geometry and differentiation should be given more emphasis in teaching and thoroughly be assessed before teaching integration.
- (b) Since some candidates demonstrated poor performance on integration, these candidates might not be aware of how useful the topic is in fields such as economics, engineering and sciences. Teachers should explain to students how important the topic is.
- (c) The poor performance of the candidates on integration calls for participatory teaching and learning process that will promote the performance.

- (d) Some candidates demonstrated lack of familiarity in the way they solved problems related to integration. It is recommended that students be involved in a lot of prior examinations, tests and other forms of assessment just to familiarize the candidates.
- (e) Teachers should conduct regular assessments on every subtopic of integration so as identify areas of difficulties and assist students accordingly.

Appendix I

S/N	Торіс	Question Number	The Percentage of Candidates who Passed	Remarks
1.	Logic	2	98.4	Good
2.	Coordinate Geometry II	8	92.8	Good
3.	Trigonometry	5	92.0	Good
4.	Sets	5	91.4	Good
5.	Linear Programming	3	87.8	Good
6.	Statistics	4	82.3	Good
7.	Algebra	6	81.9	Good
8.	Calculating Devices	1	79.8	Good
9.	Vectors	3	71.9	Good
10.	Hyperbolic Functions	2	70.9	Good
11.	Numerical Methods	7	66.9	Good
12.	Differential Equations	7	64.6	Good
13.	Complex Numbers	4	63.6	Good
14.	Functions	6	60.4	Good
15.	Probability	1	55.0	Average
16.	Coordinate Geometry I	8	54.1	Average
17.	Differentiation	10	36.2	Average
18.	Integration	9	22.6	Weak

Analysis of Candidates' Performance on each Topic in the 2022 Advanced Mathematics Examination

Appendix II

		2021		2022		
S/N	Торіс	Question Number	The Percentage of Candidates who Passed	Remarks	The Percentage of Candidates who Passed	Remarks
1.	Logic	2	79.4	Good	98.4	Good
2.	Coordinate Geometry II	8	88.8	Good	92.8	Good
3.	Trigonometry	5	82.2	Good	92.0	Good
4.	Sets	5	91.2	Good	91.4	Good
5.	Linear Programming	3	89.7	Good	87.8	Good
6.	Statistics	4	80.3	Good	82.3	Good
7.	Algebra	6	68.1	Good	81.9	Good
8.	Calculating Devices	1	70.7	Good	79.8	Good
9.	Vectors	3	43.3	Average	71.9	Good
10.	Hyperbolic Functions	2	86.8	Good	70.9	Good
11.	Numerical Methods	7	89.8	Good	66.9	Good
12.	Differential Equations	7	68.1	Good	64.6	Good
13.	Complex Numbers	4	82.4	Good	63.6	Good
14.	Functions	6	88.1	Good	60.4	Good
15.	Probability	1	62.1	Good	55.0	Average
16.	Coordinate Geometry I	8	65.7	Good	54.1	Average
17.	Differentiation	10	25.2	Weak	36.2	Average
18.	Integration	9	33.9	Weak	22.6	Weak

Analysis of Candidates' Performance in each Topic in the 2021 and 2022 Advanced Mathematics Examinations